Skip to main content
Log in

Microbial production and applications of 5-aminolevulinic acid

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alexander FW, Sandmeier E, Mehta PK, Christen P (1994) Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Eur J Biochem 219:953–960

    Article  PubMed  CAS  Google Scholar 

  • Andersen T, Briseid T, Nesbakken T, Ormerod J, Sirevaag R, Thorud M (1983) Mechanism of synthesis of 5-aminolevulinate in purple, green and blue-green bacteria. FEMS Microbiol Lett 19:303–306

    Article  CAS  Google Scholar 

  • Ano A, Funahashi H, Nakao K, Nishizawa Y (1999) Effect of glycine on 5-aminolevulinic acid biosynthesis in heterotrophic culture of Chlorella regularis YA-603. J Biosci Bioeng 88:57–60

    Article  PubMed  CAS  Google Scholar 

  • Ano A, Funahashi H, Nakao K, Nishizawa Y (2000) Effects of levulinic acid on 5-aminolevulinic acid production in heterotrophic cultures of Chlorella regularis YA-603. J Biosci Bioeng 89:176–180

    Article  PubMed  CAS  Google Scholar 

  • Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert W-D, Heinz DW (2005) Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J 24:3166–3177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Avissar YJ, Ormerod JG, Beale SI (1989) Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151:513–519

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1970) The biosynthesis of δ-aminolevulinic acid in Chlorella. Plant Physiol 45:504–506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beale SI, Gough SP, Granick S (1975) Biosynthesis of delta-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci 72:2719–2723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393

    Article  PubMed  Google Scholar 

  • Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radical Biol Med 48:1296–1301

    Article  CAS  Google Scholar 

  • Bozzini G, Colin P, Betrouni N, Maurage C, Leroy X, Simonin S, Martin-Schmitt C, Villers A, Mordon S (2013) Efficiency of 5-ALA mediated photodynamic therapy on hypoxic prostate cancer: a preclinical study on the Dunning R3327-AT2 rat tumor model. Photodiagn Photodyn Ther 10:296–303

    Article  CAS  Google Scholar 

  • Burnham B, Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472

    PubMed  CAS  PubMed Central  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  PubMed  CAS  Google Scholar 

  • Bykhovskiĭ V, Zaĭtseva N, Eliseev A (1998) Tetrapyrroles: diversity, biosynthesis, biotechnology. Prikl Biokhim Mikrobiol 34:3–21

    PubMed  Google Scholar 

  • Bykhovsky VY, Demain AL, Zaitseva NI (1997) The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin B12 biosynthesis. Crit Rev Biotechnol 17:21–37

    Article  CAS  Google Scholar 

  • Carmichael W (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 72:445–459

    Article  PubMed  CAS  Google Scholar 

  • Choi C, Hong BS, Sung HC, Lee HS, Kim JH (1999) Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol Lett 21:551–554

    Article  CAS  Google Scholar 

  • Choi HP, Hong JW, Rhee KH, Sung HC (2004) Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol Lett 236:175–181

    Article  PubMed  CAS  Google Scholar 

  • Choorit W, Saikeur A, Chodok P, Prasertsan P, Kantachote D (2011) Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. J. Biosci Bioeng 111:658–664

    Article  CAS  Google Scholar 

  • Christen P, Mehta PK (2001) From cofactor to enzymes. The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Chem Rec 1:436–447

    Article  PubMed  CAS  Google Scholar 

  • Chu ES, Yow C (2012) Modulation of telomerase and signal transduction proteins by hexyl-ALA-photodynamic therapy (PDT) in human doxorubicin resistant cancer cell models. Photodiagn Photodyn Ther 9:243–255

    Article  CAS  Google Scholar 

  • Chung S-Y, Seo K-H, Rhee JI (2005) Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochem 40:385–394

    Article  CAS  Google Scholar 

  • Drolet M, Sasarman A (1991) Cloning and nucleotide sequence of the hemA gene of Agrobacterium radiobacter. MGG 226:250–256

    Article  PubMed  CAS  Google Scholar 

  • Dubois DY, Blais SP, Huot JL, Lapointe J (2009) A C-truncated glutamyl-tRNA synthetase specific for tRNAGlu is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry 48:6012–6021

    Article  PubMed  CAS  Google Scholar 

  • Edwards S, Jackson D, Reynoldson J, Shanley B (1984) Neuropharmacology of δ-aminolaevulinic acid. II. Effect of chronic administration in mice. Neurosci Lett 50:169–173

    Article  PubMed  CAS  Google Scholar 

  • Eroglu E, Eroglu I, Gunduz U, Yucel M (2008) Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresour Technol 99:6799–6808

    Article  PubMed  CAS  Google Scholar 

  • Fales L, Nogaj L, Zeilstra-Ryalls J (2002) Analysis of the upstream sequences of the Rhodobacter sphaeroides 2.4. 1 hemA gene: in vivo evidence for the presence of two promoters that are both regulated by fnrL*. Photosynth Res 74:143–151

    Article  PubMed  CAS  Google Scholar 

  • Freist W, Gauss D, Söll D, Lapointe J (1997) Glutamyl-tRNA sythetase. Biol Chem 378:1313–1329

    PubMed  CAS  Google Scholar 

  • Fu W, Lin J, Cen P (2008) Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresour Technol 99:4864–4870

    Article  PubMed  CAS  Google Scholar 

  • Fu W, Lin J, Cen P (2010) Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Appl Biochem Biotechnol 160:456–466

    Article  PubMed  CAS  Google Scholar 

  • Gibson K, Laver W, Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. 2. The formation of δ-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J 70:71–81

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hornberger U, Liebetanz R, Tichy HV, Drews G (1990) Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain. MGG 221:371–378

    Article  PubMed  CAS  Google Scholar 

  • Horns Y, Ohru Tanaka T, Takaoka H, Takeuch Y, Konna M (1997) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci Biotechnol Biochem 61:2025–2028

    Article  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22:109–114

    Article  CAS  Google Scholar 

  • Huang D, Wang W (1986) Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J Biol Chem 261:13451–13455

    PubMed  CAS  Google Scholar 

  • Imai T, Globerman H, Gertner J, Kagawa N, Waterman M (1993) Expression and purification of functional human 17 alpha-hydroxylase/17, 20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17 alpha-hydroxylase/17, 20-lyase deficiency. J Biol Chem 268:19681–19689

    PubMed  CAS  Google Scholar 

  • Ishii K, Hiraishi A, Arai T, Kitamura H (1990) Light-dependent porphyrin production by suspended and immobilized cells of Rhodobacter sphaeroides. J Ferment Bioeng 69:26–32

    Article  CAS  Google Scholar 

  • Itoh Y, Ninomiya Y, Tajima S, Ishibashi A (2000) Photodynamic therapy for acne vulgaris with topical 5-aminolevulinic acid. Arch Dermatol 136:1093–1095

    Article  PubMed  CAS  Google Scholar 

  • Jahn D, Verkamp E (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17:215–218

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MP, Buonaccorsi GA, Mansfield R, Bishop CC, Bown SG, McEwan JR (2000) Reduction in the response to coronary and iliac artery injury with photodynamic therapy using 5-aminolaevulinic acid. Cardiovasc Res 45:478–485

    Article  PubMed  CAS  Google Scholar 

  • Johansson A, Palte G, Schnell O, Tonn JC, Herms J, Stepp H (2010) 5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochem Photobiol 86:1373–1378

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara M, Mizutani M, Matsuda R, Hara K-I, Kojima I (1994) A new biosynthetic pathway of porphyrins from isopropanol. J Ferment Bioeng 77:626–629

    Article  CAS  Google Scholar 

  • Kamiyama H, Hotta Y, Tanaka T, Nishikawa S, Sasaki K (2000) Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacteria. Seibutu-Kougaku 78:48–55

    CAS  Google Scholar 

  • Kang Z, Gao C, Wang Q, Liu H, Qi Q (2010) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101:7675–7678

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Wang Y, Gu P, Wang Q, Qi Q (2011a) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13:492–498

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Wang Y, Wang Q, Qi Q (2011b) Metabolic engineering to improve 5-aminolevulinic acid production. Bioengineered 2:342–345

    Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542

    Article  PubMed  CAS  Google Scholar 

  • Katsuda T, Arimoto T, Igarashi K, Azuma M, Kato J, Takakuwa S, Ooshima H (2000) Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus. Biochem Eng J 5:157–164

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. J Photochem Photobiol B 6:143–148

    Article  PubMed  CAS  Google Scholar 

  • Kiatpapan P, Phonghatsabun M, Yamashita M, Murooka Y, Panbangred W (2011) Production of 5-aminolevulinic acid by Propionibacterium acidipropionici TISTR442. J Biosci Bioeng 111:425–428

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Haque MZ (1971) Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria. Plant Soil 35:443–456

    Article  Google Scholar 

  • Koesnandar I, Ago S, Nishio N, Nagai S (1989) Production of extracellular 5-aminolevulinic acid by Clostridium thermoaceticum grown in minimal medium. Biotechnol Lett 11:567–572

    Article  CAS  Google Scholar 

  • Korkmaz A (2012) Effects of exogenous application of 5-aminolevulinic acid in crop plants. Abiotic Stress Responses in Plants. Springer, New York, pp 215–234

    Google Scholar 

  • Krestyn E, Kolarova H, Bajgar R, Tomankova K (2010) Photodynamic properties of ZnTPPS(4), ClAlPcS(2) and ALA in human melanoma G361 cells. Toxicol in Vitro 24:286–291

    Article  PubMed  CAS  Google Scholar 

  • Kuramochi H, Konnai M, Tanaka T, Hotta Y (1997) Method for improving plant salt-tolerance, Google Patents

  • Lee W, Shalita AR, Poh-Fitzpatrick MB (1978) Comparative studies of porphyrin production in Propionibacterium acnes and Propionibacterium granulosum. J Bacteriol 133:811–815

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee H, Erickson L, Yang S (1987) Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis. Biotechnol Bioeng 29:832–843

    Article  PubMed  CAS  Google Scholar 

  • Lee D-H, Jun W-J, Kim K-M, Shin D-H, Cho H-Y, Hong B-S (2003) Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using d-glucose. Enzyme Microb Technol 32:27–34

    Article  CAS  Google Scholar 

  • Leong SA, Williams PH, Ditta GS (1985) Analysis of the 5′ regulatory region of the gene for δ-aminolevulinic acid synthetase of Rhizobium meliloti. Nucleic Acids Res 13:5965–5976

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levicán G, Katz A, de Armas M, Núñez H, Orellana O (2007) Regulation of a glutamyl-tRNA synthetase by the heme status. Proc Natl Acad Sci 104:3135–3140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li JM, Russell C, Cosloy SD (1989) Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82:209–217

    Article  PubMed  CAS  Google Scholar 

  • Lin JP, Fu WQ, Cen PL (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol 100:2293–2297

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang L, Wang Y, Cai L (2010) D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Appl Biochem Biotechnol 160:822–830

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Zhang G, Dai X, He C (2010) Photosynthetic bacteria treatment of synthetic soybean wastewater: direct degradation of macromolecules. Bioresour Technol 101:7672–7674

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Zhang G, Dong S (2011a) Quantitative study of PNSB energy metabolism in degrading pollutants under weak light-micro oxygen condition. Bioresour Technol 102:4968–4973

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Zhang G, Wan T, Lu Y (2011b) Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: different metabolic pathways. Bioresour Technol 102:9503–9508

    Article  PubMed  CAS  Google Scholar 

  • Madore E, Florentz C, Giegé R, Si S, Yokoyama S, Lapointe J (1999) Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Eur J Biochem 266:1128–1135

    Article  PubMed  CAS  Google Scholar 

  • Madukasi EI, Zhang G (2010) Microaerobic biodegradation of high organic load wastewater by phototrophic bacteria. Afr J Biotechnol 9:3852–3860

    CAS  Google Scholar 

  • Masuda T, Tanaka R, Shioi Y, K-i T, Kannangara CG, Tsuji H (1994) Mechanism of benzyladenine-induced stimulation of the synthesis of 5-aminolevulinic acid in greening cucumber cotyledons: benzyladenine increases levels of plastid tRNAGlu. Plant Cell Physiol 35:183–188

    CAS  Google Scholar 

  • McClung CR, Somerville JE, Guerinot ML, Chelm BK (1987) Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54:133–139

    Article  PubMed  CAS  Google Scholar 

  • Mikolajewska P, Donnelly RF, Garland MJ, Morrow DI, Singh TRR, Iani V, Moan J, Juzeniene A (2010) Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)-and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res 27:2213–2220

    Article  PubMed  CAS  Google Scholar 

  • Nakayashiki T, Inokuchi H (1996) Control of the availability of exogenous 5-aminolevulinic acid in Escherichia coli. Gene Genet Syst 71:237–241

    Article  CAS  Google Scholar 

  • Neidle EL, Kaplan S (1993a) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175:2292–2303

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neidle EL, Kaplan S (1993b) 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol 175:2304–2313

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nichols B, Harris P, James A (1965) The biosynthesis of trans3-hexadecenoic acid by Chlorella vulgaris. Biochem Biophys Res Commun 21:473–479

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S, Watanabe K, Tanaka T, Miyachi N, Hotta Y, Murooka Y (1999) Rhodobacter sphaeroides mutant which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J Biosci Bioeng 87:798–804

    Article  PubMed  CAS  Google Scholar 

  • Page MD, Ferguson SJ (1994) Differential reduction in soluble and membrane-bound c-type cytochrome contents in a Paracoccus denitrificans mutant partially deficient in 5-aminolevulinate synthase activity. J Bacteriol 176:5919–5928

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qin G, Lin J, Liu X, Cen P (2006) Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci Bioeng 102:316–322

    Article  CAS  Google Scholar 

  • Ranson-Olson B, Zeilstra-Ryalls JH (2008) Regulation of the Rhodobacter sphaeroides 2.4. 1 hemA gene by PrrA and FnrL. J Bacteriol 190:6769–6778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Hopen HJ, Wu SM (1984) Photodynamic herbicides: 1. Concept and phenomenology. Enzyme Microb Technol 6:390–396

    Article  CAS  Google Scholar 

  • Rebeiz CA, Juvik JA, Rebeiz CC (1988) Porphyric insecticides: 1. Concept and phenomenology. Pestic Biochem Physiol 30:11–27

    Article  CAS  Google Scholar 

  • Rebeiz C, Reddy K, Nandihalli U, Velu J (1990) Tetrapyrrole-dependent photodynamic herbicides. Photochem Photobiol 52:1099–1117

    Article  CAS  Google Scholar 

  • Saikeur A, Choorit W, Prasertsan P, Kantachote D, Sasaki K (2009) Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Biosci Biotechnol Biochem 73:987–992

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Ikeda S, Nishizawa Y, Hayashi M (1987) Production of 5-aminolevulinic acid by photosynthetic bacteria. J Ferment Technol 65:511–515

    Article  CAS  Google Scholar 

  • Sasaki K, Ikeda S, Konishi T, Nishizawa Y, Hayashi M (1989) Influence of iron on the excretion of 5-aminolevulinic acid by a photosynthetic bacterium, Rhodobacter sphaeroides. J Ferment Bioeng 68:378–381

    Article  CAS  Google Scholar 

  • Sasaki K, Tanaka T, Nishizawa Y, Hayashi M (1990) Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl Microbiol Biotechnol 32:727–731

    Article  CAS  Google Scholar 

  • Sasaki K, Tanaka T, Nishizawa Y, Hayashi M (1991) Enhanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in photoheterotrophic culture of Rhodobacter sphaeroides. J Ferment Bioeng 71:403–406

    Article  CAS  Google Scholar 

  • Sasaki K, Tanaka T, Nishio N, Nagai S (1993) Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. Biotechnol Lett 15:859–864

    Article  CAS  Google Scholar 

  • Sasaki K, Watanabe K, Tanaka T, Hotta Y (1995) 5-Aminolevulinic acid production by Chlorella sp. during heterotrophic cultivation in the dark. World J Microbiol Biotechnol 11:361–362

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Watanabe M, Nishio N (1997) Inhibition of 5-aminolevulinic acid (ALA) dehydratase by undissociated levulinic acid during ALA extracellular formation by Rhodobacter sphaeroides. Biotechnol Lett 19:421–424

    Article  CAS  Google Scholar 

  • Sasaki K, Tanaka T, Nagai S (1998) Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. In: Martin AM (eds) Bioconversion of waste materials to industrial products, second edition. Blackie Academic and Professional pp. 247-291

  • Sasaki K, Watanabe M, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Watanabe M, Suda Y, Ishizuka A, Noparatnaraporn N (2005) Applications of photosynthetic bacteria for medical fields. J Biosci Bioeng 100:481–488

    Article  PubMed  CAS  Google Scholar 

  • Sasikala C, Ramana CV, Rao PR (1994) 5-Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol Progr 10:451–459

    Article  CAS  Google Scholar 

  • Sasikala C, Ramana C, Rao PR (1995) Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 20:123–126

    Article  CAS  Google Scholar 

  • Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert WD, Nakayashiki T, Murai M (2002) Escherichia coli glutamyl-tRNA reductase trapping the thioester intermediate. J Biol Chem 277:48657–48663

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56:125–158

    Article  PubMed  CAS  Google Scholar 

  • Schneegurt MA, Beale SI (1988) Characterization of the RNA required for biosynthesis of δ-aminolevulinic acid from glutamate purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis. Plant Physiol 86:497–504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sekine S-i, Nureki O, Shimada A, Vassylyev DG, Yokoyama S (2001) Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol Mol Biol 8:203–206

    CAS  Google Scholar 

  • Sekine S-i, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J, Vassylyev DG, Yokoyama S (2003) ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J 22:676–688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shemin D, Kikuchi G (1958) Enzymatic synthesis of sigma-aminolevulinic acid. Ann N Y Acad Sci 75:122–128

    Article  PubMed  CAS  Google Scholar 

  • Sirianuntapiboon S, Sriku M (2006) Reducing red color intensity of seafood wastewater in facultative pond. Bioresour Technol 97:1612–1617

    Article  PubMed  CAS  Google Scholar 

  • Suh IS, Lee SB (2003) A light distribution model for an internally radiating photobioreactor. Biotechnol Bioeng 82:180–189

    Article  PubMed  CAS  Google Scholar 

  • Takeno K, Yamaoka Y, Sasaki K (2005) Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria. Microbiol Technol 21:1385–1391

    CAS  Google Scholar 

  • Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K (2007) Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Biotechnol Lett 29:773–778

    Article  PubMed  CAS  Google Scholar 

  • Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL (2011) Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 286:26424–26430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van der Werf M, Zeikus JG (1996) 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl Environ Microbiol 62:3560–3566

    PubMed  PubMed Central  Google Scholar 

  • Wang WY, Huang DD, Stachon D, Gough SP, Kannangara CG (1984) Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74:569–575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Wilson S, Elliott T (1999) A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol 181:6033–6041

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watanabe K, Nishikawa S, Tanaka T, Hotta Y (1996) Production of 5-aminolevulinic acid. Jpn Kokai Tokkyo Kouho: Toku Kai Hei 8-168391

  • Weinstein JD, Beale S (1983) Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J Biol Chem 258:6799–6807

    PubMed  CAS  Google Scholar 

  • Woodard SI, Dailey HA (1995) Regulation of heme biosynthesis in Escherichia coli. Arch Biochem Biophys 316:110–115

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Zhang G, Li J, Lu H, Zhao W (2012) Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment. Bioresour Technol 119:55–59

    Article  PubMed  CAS  Google Scholar 

  • Yegani R, Yoshimura S, Moriya K, Katsuda T, Katoh S (2005) Improvement of growth stability of photosynthetic bacterium Rhodobacter capsulatus. J Biosci Bioeng 100:672–677

    Article  PubMed  CAS  Google Scholar 

  • Zaak D, Sroka R, Höppner M, Khoder W, Reich O, Tritschler S, Muschter R, Knüchel R, Hofstetter A (2003) Photodynamic therapy by means of 5-ALA induced PPIX in human prostate cancer–preliminary results. Med Laser Appl 18:91–95

    Article  Google Scholar 

  • Zeilstra-Ryalls JH, Kaplan S (1995) Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4. 1: the role of the fnrL gene. J Bacteriol 177:6422–6431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zeilstra-Ryalls JH, Kaplan S (1996) Control of hemA expression in Rhodobacter sphaeroides 2.4. 1: regulation through alterations in the cellular redox state. J Bacteriol 178:985–993

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Li H, Zhou W, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51278489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, G., Li, X. et al. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 98, 7349–7357 (2014). https://doi.org/10.1007/s00253-014-5925-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5925-y

Keywords