Skip to main content
Log in

Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript


Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3bna2tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  • Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Met Eng 7(3):155–164

    Article  CAS  Google Scholar 

  • Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain 8 higher alcohols as biofuels. Nature 451(7174):86–89

    Article  PubMed  CAS  Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in 10 yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31(4):335–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5(7):647–659

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blazeck J, Garg R, Reed B, Alper H (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng 109(11):2884–2995

    Article  PubMed  CAS  Google Scholar 

  • Blumhoffa ML, Steigera MG, Mattanovicha D, Sauera M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Met Eng 19:26–32

    Article  Google Scholar 

  • Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus terreus. J Bacteriol 177(12):3573–3578

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5:65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR et al (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucl Acid Res 40(D1):D700–D705

    Article  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241(3):779–786

    Article  PubMed  CAS  Google Scholar 

  • Curran K, Alper H (2012) Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Met Eng 14(4):289–297

    Article  CAS  Google Scholar 

  • Guldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucl Acid Res 24(13):2519–2524

    Article  CAS  Google Scholar 

  • Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Bluthgen N, Borger S, Costenoble R, Heinemann M et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155–1160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jones JM, Nau K, Geraghty MT, Erdmann R, Gould SJ (1999) Identification of peroxisomal acyl-CoA thioesterases in yeast and humans. J Bio Chem 274(14):9216–9223

    Article  CAS  Google Scholar 

  • Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80(2):223–229

    Article  PubMed  CAS  Google Scholar 

  • Karim AS, Curran KA, Alper HS (2013) Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. Fems Yeast Res 13(1):107–116

    Article  PubMed  CAS  Google Scholar 

  • Kautola H, Rymowicz W, Linko YY, Linko P (1991) Itaconic acid production by immobilized Aspergillus terreus with varied metal additions. Appl Microbiol and Biotechnol 35(2):154–158

    CAS  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K (1932) Über die Production von Itaconsäure und Mannit durch einem neuen Schimmelpilz Aspergillus itaconicus. Acta Phytochim 5:271–287

    Google Scholar 

  • Kuenz A, Gallenmuller Y, Willke T, Vorlop KD (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96(5):1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8(6):536–546

    Article  PubMed  CAS  Google Scholar 

  • Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, Schrimpe-Rutledge AC, Smith RD, Adkins JN, Zengler K et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Comm 3:929

    Article  Google Scholar 

  • Li A, Pfelzer N, Zuijderwijk R, Punt P (2012) Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. Bmc Biotechnol 12:57

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liao JC, Chang PC; Industrial Technology Research Institute, assignee (2010) Genetically modified microorganisms for producing itaconic acid with high yields. USA

  • Lin T (2011) Engineering the production of itaconic acid in Escherichia coli. Houston, TX: Rice University. 76 p

  • Liu L, Redden H, Alper H (2013) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opinion Biotechnol 24:1023–1030

    Article  CAS  Google Scholar 

  • Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122

    Article  PubMed  CAS  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nuss P, Gardner KH (2013) Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. Int J Life Cycle Assess 18(3):603–612

    Article  CAS  Google Scholar 

  • Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606

    Article  PubMed  CAS  Google Scholar 

  • Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Bécam AM, Rytka J, Herbert CJ (2002) Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. Febs Lett 517(1–3):97–102

    Article  PubMed  CAS  Google Scholar 

  • Park YS, Itida M, Ohta N, Okabe M (1994) Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus. J Ferment Bioeng 77(3):329–331

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Prot 6(9):1290–1307

    Article  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562

    Article  PubMed  CAS  Google Scholar 

  • Song JM, Rabinowitz JC (1993) Function of yeast cytoplasmic C1-tetrahydrofolate synthase. Proc Natl Acad Sci U S A 90(7):2636–2640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tate BE (1981) Itaconic acid and derivatives. In: Grayson M, Eckroth E, editors. Kirk-Othmer Encyclopedia of Chemical Technology. 3 ed. p 865–873

  • Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87(5):1657–1664

    Article  PubMed  CAS  Google Scholar 

  • Tsai YC, Huang MC, Lin SF, Su YC; National Science Council, assignee (2000) Method for the production of itaconic acid using Aspergillus terreus solid state fermentation. United States

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    Article  PubMed  CAS  Google Scholar 

  • Yahiro K, Takahama T, Park YS, Okabe M (1995) Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. J Ferment Bioeng 79(5):506–508

    Article  CAS  Google Scholar 

Download references


This work was funded by the DuPont Young Professor Grant. We would like to thank Dr. Gary T. Rochelle for access to a HPLC and Alex Voice, Paul Nielsen, Nathan Fine, and Omkar Namjoshi for HPLC assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hal S. Alper.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blazeck, J., Miller, J., Pan, A. et al. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98, 8155–8164 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: