Skip to main content

Bromelain: an overview of industrial application and purification strategies

Abstract

This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abdelgadir IEO, Cochran RC, Titgemeyer EC, Vanzant ES (2013) In vitro determination of ruminal protein degradability of alfafa and prairie hay via a commercial protease in the presence or absence of cellulase or driselase. J Anim Sci 75:2215–2222

    Google Scholar 

  • Amid A, Ismail NA, Yusof F, Salleh HM (2011) Expression, purification, and characterization of a recombinant stem bromelain from Ananas comosus. Process Biochem 46(12):2232–2239

    CAS  Google Scholar 

  • Azevedo AM, Rosa PAJ, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27(4):240–247. doi:10.1016/j.tibtech.2009.01.004

    CAS  PubMed  Google Scholar 

  • Babu BR, Rastogi NK, Raghavarao KSMS (2008) Liquid–liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chem Eng Process Process Intensif 47(1):83–89. doi:10.1016/j.cep.2007.08.006

    CAS  Google Scholar 

  • Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K (1982) L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201(1):189–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benucci I, Liburdi K, Garzillo AMV, Esti M (2011) Bromelain from pineapple stem in alcoholic–acidic buffers for wine application. Food Chem 124(4):1349–1353. doi:10.1016/j.foodchem.2010.07.087

    CAS  Google Scholar 

  • Bhambure R, Sharma R, Gupta D, Rathore AS (2013) A novel aqueous two phase assisted platform for efficient removal of process related impurities associated with E. coli based biotherapeutic protein products. J Chromatogr A. doi:10.1016/j.chroma.2013.07.085

    Google Scholar 

  • Bhattacharya R, Bhattacharyya D (2009) Preservation of natural stability of fruit “bromelain” from Ananas comosus (pineapple). J Food Biochem 33(1):1–19

    CAS  Google Scholar 

  • Bruno M, Trejo S, Avilés X, Caffini N, López L (2006) Isolation and characterization of hieronymain II, another peptidase isolated from fruits of Bromelia hieronymi Mez (Bromeliaceae). Protein J 25(3):224–231

    CAS  PubMed  Google Scholar 

  • Chaisakdanugull C, Chockchai T, Wrolstad RE (2007) Pineapple juice and its fractions in enzymatic browning inhibition of banana [Musa (AAA group) Gros Michel]. J Agric Food Chem 55:4252–4257

    CAS  PubMed  Google Scholar 

  • Chaiwut P, Nitsawang S, Shank L, Kanasawud P (2007) A comparative study on properties and proteolytic components of papaya peel and latex proteases. Chiang Mai J Sci 34(1):109–118

    Google Scholar 

  • Chakravarthy PK, Acharya S (2012) Efficacy of extrinsic stain removal by novel dentifrice containing papain and bromelain extracts. J Young Pharm 4(4):245–249. doi:10.4103/0975-1483.104368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T (2012) Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem 135(4):3020–3038. doi:10.1016/j.foodchem.2012.06.100

    CAS  PubMed  Google Scholar 

  • Chaurasiya RS, Umesh Hebbar H (2013) Extraction of bromelain from pineapple core and purification by RME and precipitation methods. Sep Purif Technol 111(0):90–97. doi:10.1016/j.seppur.2013.03.029

    CAS  Google Scholar 

  • Chen D-H, Huang S-H (2004) Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles. Process Biochem 39(12):2207–2211. doi:10.1016/j.procbio.2003.11.014

    CAS  Google Scholar 

  • Cheung IWY, Li-Chan ECY (2014) Application of taste sensing system for characterisation of enzymatic hydrolysates from shrimp processing by-products. Food Chem 145(0):1076–1085. doi:10.1016/j.foodchem.2013.09.004

    CAS  PubMed  Google Scholar 

  • Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281(18):12824–12832. doi:10.1074/jbc.M513331200

    CAS  PubMed  Google Scholar 

  • Chuapoehuk P, Raksakulthai N (1992) Use of papain and bromelain in the production of oyster sauce. ASEAN Food J 7(4):196–199

    CAS  Google Scholar 

  • Coelho DF, Silveira E, Pessoa Junior A, Tambourgi EB (2013) Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate). Bioprocess Biosyst Eng 36(2):185–192. doi:10.1007/s00449-012-0774-5

    CAS  PubMed  Google Scholar 

  • Corzo CA, Waliszewski KN, Welti-Chanes J (2012) Pineapple fruit bromelain affinity to different protein substrates. Food Chem 133(3):631–635. doi:10.1016/j.foodchem.2011.05.119

    CAS  Google Scholar 

  • Devakate RV, Patil VV, Waje SS, Thorat BN (2009) Purification and drying of bromelain. Sep Purif Technol 64(3):259–264

    CAS  Google Scholar 

  • Devi RY (2012) Biotechnological application of proteolytic enzymes in post cocoon technology. Int J Sci Nat 3(2):237–240

    CAS  Google Scholar 

  • Doko MB, Bassani V, Casadebaig J, Cavailles L, Jacob M (1991) Preparation of proteolytic enzyme extracts from Ananas comosus L., Merr. fruit juice using semipermeable membrane, ammonium sulfate extraction, centrifugation and freeze-drying processes. Int J Pharm 76(3):199–206. doi:10.1016/0378-5173(91)90272-P

    CAS  Google Scholar 

  • Elavarasan K, Naveen Kumar V, Shamasundar BA (2013) Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (Catla catla) as influenced by the nature of enzyme. J Food Process Preserv:n/a-n/a. doi:10.1111/jfpp.12081

    Google Scholar 

  • Espitia-Saloma E, Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2013) Continuous aqueous two-phase systems devices for the recovery of biological products. Food Bioprod Process. doi:10.1016/j.fbp.2013.05.006

    Google Scholar 

  • Feijoo-Siota L, Villa T (2011) Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Technol 4(6):1066–1088

    CAS  Google Scholar 

  • Ferreira JF, Bresolin IRP, Silveira E, Tambourgi EB (2011) Purification of bromelain from Ananas comosus by PEG/phosphate ATPS. Chem Eng Trans 24:931–936

    Google Scholar 

  • Fileti AMF, Fischer GA, Santana JCC, Tambourgi EB (2009) Batch and continuous extraction of bromelain enzyme by reversed micelles. Braz Arch Biol Techn 52:1225–1234

    CAS  Google Scholar 

  • Gautam SS, Mishra SK, Dash V, Goyal AK, Rath G (2010) Comparative study of extraction, purification and estimation of bromelain from stem and fruit of pineapple plant. Thai J Pharm Sci 34:67–76

    CAS  Google Scholar 

  • Gerelt B, Ikeuchi Y, Suzuki A (2000) Meat tenderization by proteolytic enzymes after osmotic dehydration. Meat Sci 56(3):311–318. doi:10.1016/S0309-1740(00)00060-7

    CAS  PubMed  Google Scholar 

  • Ghanbari R, Ebrahimpour A, Hamid AA, Ismail A, Saari N (2012) Actinopyga lecanora hydrolysates as natural antibacterial agents. Int J Mol Sci 13:16796–16811. doi:10.3390/ijms131216796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gimeno C, Seguí L, Fito P (2010) Valorisation of industrial pineapple residues: bromelain separation followed by bioethanol fermentation. In: Int Conf Food Innov Food Innova 2010, p 1-4

  • Givens DI, Owen E, Axford RFE, Omed HM (2002) Forage evaluation in ruminant nutrition. CABI Publishing

  • Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe-Paganon S, Park H-w, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim S-H, Rao Z, Shi Y, Terwilliger TC, Kim C-Y, Hung L-W, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, William F, Studier, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schütz A, Heinemann U, Yokoyama S, Büssow K, Gunsalus KC (2008) Protein production and purification. Nat Meth 5(2):135–146

    Google Scholar 

  • Gupta P, Saleemuddin M (2006) Bioaffinity based oriented immobilization of stem bromelain. Biotechnol Lett 28(12):917–922

    CAS  PubMed  Google Scholar 

  • Hage DS, Anguizola JA, Bi C, Li R, Matsuda R, Papastavros E, Pfaunmiller E, Vargas J, Zheng X (2012) Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J Pharm Biomed Anal:1-13

  • Hale LP, Greer PK, Trinh CT, James CL (2005) Proteinase activity and stability of natural bromelain preparations. Int Immunopharmacol 5(4):783–793

    CAS  PubMed  Google Scholar 

  • Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113(1):2–13. doi:10.1111/j.1600-0722.2004.00180.x

    CAS  PubMed  Google Scholar 

  • Hannig C, Spitzmüller B, Lux HC, Altenburger M, Al-Ahmad A, Hannig M (2010) Efficacy of enzymatic toothpastes for immobilisation of protective enzymes in the in situ pellicle. Arch Oral Biol 55(7):463–469. doi:10.1016/j.archoralbio.2010.03.020

    CAS  PubMed  Google Scholar 

  • Harrach T, Eckert K, Schulze-Forster K, Nuck R, Grunow D, Maurer HR (1995) Isolation and partial characterization of basic proteinases from stem bromelain. J Protein Chem 14(1):41–52. doi:10.1007/bf01902843

    CAS  PubMed  Google Scholar 

  • Harrach T, Eckert K, Maurer HR, Machleidt I, Machleidt W, Nuck R (1998) Isolation and characterization of two forms of an acidic bromelain stem proteinase. J Protein Chem 17(4):351–361. doi:10.1023/a:1022507316434

    CAS  PubMed  Google Scholar 

  • Hebbar U, Sumana B, Hemavathi AB, Raghavarao KSMS (2012) Separation and purification of bromelain by reverse micellar extraction coupled ultrafiltration and comparative studies with other methods. Food Bioprocess Tech 5(3):1010–1018. doi:10.1007/s11947-010-0395-4

    CAS  Google Scholar 

  • Heinicke R, Gortner W (1957) Stem bromelain—a new protease preparation from pineapple plants. Econ Bot 11(3):225–234

    CAS  Google Scholar 

  • Hevia P, Olcott HS (1977) Flavor of enzyme-solubilized fish protein concentrate fractions. J Agric Food Chem 25(4):772–775. doi:10.1021/jf60212a044

    CAS  Google Scholar 

  • Iversen SL, Jørgensen MH (1995) Azocasein assay for alkaline protease in complex fermentation broth. Biotechnol Tech 9(8):573–576. doi:10.1007/bf00152446

    CAS  Google Scholar 

  • Janson J-C (2011) Protein purification: principles, high resolution methods, and applications, 3rd edition. John Wiley & Sons

  • Joiner A (2010) Whitening toothpastes: a review of the literature. J Dent 38:e17–e24

    CAS  PubMed  Google Scholar 

  • Kalyana P, Shashidhar A, Meghashyam B, SreeVidya KR, Sweta S (2011) Stain removal efficacy of a novel dentifrice containing papain and bromelain extracts—an in vitro study. Int J Dent Hyg 9(3):229–233. doi:10.1111/j.1601-5037.2010.00473.x

    CAS  PubMed  Google Scholar 

  • Ketnawa S, Rawdkuen S (2011) Application of bromelain extract for muscle foods tenderization. Food Nutr Sci 2:393–401. doi:10.4236/fns.2011.25055

    CAS  Google Scholar 

  • Ketnawa S, Rawdkuen S, Chaiwut P (2010) Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochem Eng J 52(2–3):205–211. doi:10.1016/j.bej.2010.08.012

    CAS  Google Scholar 

  • Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: a potential source for bromelain extraction. Food Bioprod Process 90(3):385–391

    CAS  Google Scholar 

  • Khan R, Rasheedi S, Haq S (2003) Effect of pH, temperature and alcohols on the stability of glycosylated and deglycosylated stem bromelain. J Biosci 28(6):709–714. doi:10.1007/bf02708431

    CAS  PubMed  Google Scholar 

  • Ko B-S, Hwang Y-I, Lee S-C (1996) Simple purification of bromelain from pineapple. J Food Sci Nutr 1(1):106–110

    CAS  Google Scholar 

  • Koh J, Kang S-M, Kim S-J, Cha M-K, Kwon Y-J (2006) Effect of pineapple protease on the characteristics of protein fibers. Fibers Polym 7(2):180–185. doi:10.1007/bf02908264

    CAS  Google Scholar 

  • Kong X, Zhou H, Qian H (2007) Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem 102(3):759–763. doi:10.1016/j.foodchem.2006.06.062

    CAS  Google Scholar 

  • Koohmaraie M, Geesink GH (2006) Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 74(1):34–43. doi:10.1016/j.meatsci.2006.04.025

    CAS  PubMed  Google Scholar 

  • Kumar V, Sharma VK, Kalonia DS (2009) Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: impact on solubility, stability and conformation. Int J Pharm 366(1–2):38–43. doi:10.1016/j.ijpharm.2008.08.037

    CAS  PubMed  Google Scholar 

  • Kumar S, Hemavathi AB, Hebbar HU (2011) Affinity based reverse micellar extraction and purification of bromelain from pineapple (Ananas comosus L. Merryl) waste. Process Biochem 46(5):1216–1220. doi:10.1016/j.procbio.2011.02.008

    CAS  Google Scholar 

  • Lamsal BP, Jung S, Johnson LA (2007) Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. LWT - Food SciTechnol 40(7):1215–1223. doi:10.1016/j.lwt.2006.08.021

    CAS  Google Scholar 

  • Lan JC-W, Yeh C-Y, Wang C-C, Yang Y-H, Wu H-S (2013) Partition separation and characterization of the polyhydroxyalkanoates synthase produced from recombinant Escherichia coli using an aqueous two-phase system. J Biosci Bioeng 116(4):499–505. doi:10.1016/j.jbiosc.2013.04.010

    CAS  PubMed  Google Scholar 

  • Laohakunjit N, Selamassakul O, Kerdchoechuen O (2014) Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.). Food Chem. doi:10.1016/j.foodchem.2014.02.101

    PubMed  Google Scholar 

  • Lee KL, Albee KL, Bernasconi RJ, Edmunds T (1997) Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases. Biochem J 327:199–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levy LL, Emer JJ (2012) Complications of minimally invasive cosmetic procedures: prevention and management. J Cutan Aesthet Surg 5(2):121–132. doi:10.4103/0974-2077.99451

    PubMed Central  PubMed  Google Scholar 

  • Lizuka K, Aishima T (1999) Tenderization of beef with pineapple juice monitored by fourier transform infrared spectroscopy and chemometric analysis. J Food Sci 64(6):973–977. doi:10.1111/j.1365-2621.1999.tb12262.x

    Google Scholar 

  • Lopes FLG, Severo Júnior JB, Souza RR, Ehrhardt DD, Santana JCC, Tambourgi EB (2009) Concentration by membrane separation processes of a medicinal product obtained from pineapple pulp. Braz Arch Biol Technol 52:457–464

    CAS  Google Scholar 

  • Lozano-De-Gonzalez PG, Barrett DM, Wrolstad RE, Durst RW (1993) Enzymatic browning inhibited in fresh and dried apple rings by pineapple juice. J Food Sci 58(2):399–404

    CAS  Google Scholar 

  • Melendo JA, Beltrán JA, Roncalés P (1997) Tenderization of squid (Loligo vulgaris and Illex coindetii) with bromelain and a bovine spleen lysosomal-enriched extract. Food Res Int 30(5):335–341. doi:10.1016/s0963-9969(97)00057-4

    CAS  Google Scholar 

  • Murachi T (1964) Amino acid composition of stem bromelain*. Biochem 3(7):932–934. doi:10.1021/bi00895a014

    CAS  Google Scholar 

  • Murachi T, Neurath H (1960) Fractionation and specificity studies on stem bromelain. J Biol Chem 235(1):99–107

    CAS  PubMed  Google Scholar 

  • Murachi T, Yasui M, Yasuda Y (1964) Purification and physical characterization of stem bromelain*. Biochem 3(1):48–55

    CAS  Google Scholar 

  • Murachi T, Suzuki A, Takahashi N (1967) Evidence for glycoprotein nature of stem bromelain. Isolation of a glycopeptide*. Biochem 6(12):3730–3736. doi:10.1021/bi00864a015

    CAS  Google Scholar 

  • Mutalib SRA, Samicho Z, Abdullah N, Zaman NK, Hajar N Effect of maturity of pineapple variety N36 on its waste physico-chemical properties. In: 2012 I.E. Colloq Hum Sci Eng Res 3-4 Dec. 2012 2012. p 432-436

  • Nadzirah KZ, Zainal S, Noriham A, Normah I, Roha AMS (2012) Physico-chemical properties of pineapple crown extract variety N36 and bromelain activity in different forms. APCBEE Procedia 4(0):130–134. doi:10.1016/j.apcbee.2012.11.022

    CAS  Google Scholar 

  • Napper AD, Bennett SP, Borowski M, Holdridge MB, Leonard MJ, Rogers EE, Duan Y, Laursen RA, Reinhold B, Shames SL (1994) Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. Biochem J 301:727–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nowak D (2011) Enzymes in tenderization of meat—the system of calpains and other systems—a review. Pol J Food and Nutr Sci 61(4):231–237. doi:10.2478/v10222-011-0025-5

    CAS  Google Scholar 

  • Omidinia E, Shahbaz Mohamadi H, Dinarvand R, Taherkhani H-A (2010) Investigation of chromatography and polymer/salt aqueous two-phase processes for downstream processing development of recombinant phenylalanine dehydrogenase. Bioprocess and Biosyst Eng 33(3):317–329. doi:10.1007/s00449-009-0327-8

    CAS  Google Scholar 

  • Ota S, Moore S, Stein WH (1964) Preparation and chemical properties of purified stem and fruit bromelains*. Biochem 3(2):180–185. doi:10.1021/bi00890a007

    CAS  Google Scholar 

  • Ota S, Muta E, Katahira Y, Okamoto Y (1985) Reinvestigation of fractionation and some properties of the proteolytically active components of stem and fruit bromelains. J Biochem 98(1):219–228

    CAS  PubMed  Google Scholar 

  • Ozlen SN, Chatsworth C (1995) Cosmetic composition containing alpha hydroxyacids, salicyclic acid, and enzyme mixture of bromelain and papain. United States Patent 5:441,740

    Google Scholar 

  • Ozoğlu H, Bayındırlı A (2002) Inhibition of enzymic browning in cloudy apple juice with selected antibrowning agents. Food Control 13(4–5):213–221. doi:10.1016/S0956-7135(02)00011-7

    Google Scholar 

  • Pasupuleti VK, Braun S (2010) State of the art manufacturing of protein hydrolysates. In: Demain AL, Pasupuleti VK (eds) Protein hydrolysates in biotechnology. Springer, Netherlands, pp 11–32

    Google Scholar 

  • Pietrasik Z, Shand PJ (2011) Effects of moisture enhancement, enzyme treatment, and blade tenderization on the processing characteristics and tenderness of beef semimembranosus steaks. Meat Sci 88(1):8–13. doi:10.1016/j.meatsci.2010.11.024

    CAS  PubMed  Google Scholar 

  • Pietrasik Z, Aalhus JL, Gibson LL, Shand PJ (2010) Influence of blade tenderization, moisture enhancement and pancreatin enzyme treatment on the processing characteristics and tenderness of beef semitendinosus muscle. Meat Sci 84(3):512–517

    CAS  PubMed  Google Scholar 

  • Polaina J, MacCabe AP (2007) Industrial enzymes: structure, function and applications. Springer, Netherland

    Google Scholar 

  • Rabelo APB, Tambourgi EB, Pessoa A Jr (2004) Bromelain partitioning in two-phase aqueous systems containing PEO–PPO–PEO block copolymers. J Chromatogr, B 807(1):61–68. doi:10.1016/j.jchromb.2004.03.029

    CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62(3):597–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren J, Zhao M, Shi J, Wang J, Jiang Y, Cui C, Kakuda Y, Xue SJ (2008) Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem 108(2):727–736. doi:10.1016/j.foodchem.2007.11.010

    CAS  Google Scholar 

  • Ritonja A, Rowan AD, Buttle DJ, Rawlings ND, Turk V, Barrett AJ (1989) Stem bromelain: amino acid sequence and implications for weak binding of cystatin. FEBS Lett 247(2):419–424. doi:10.1016/0014-5793(89)81383-3

    CAS  PubMed  Google Scholar 

  • Rowan AD, Buttlet DJ, Barrett AJ (1990) The cysteine proteinases of the pineapple plant. Biochem J 266:869–875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sai-Nan S, Yu-Ting Z, Hua-Li N, Li-Min Z, Branford-White CJ (2009) Isotherm, Kinetic and thermodynamic analysis of bromelain adsorption on reactive blue 4 immobilized composite membranes. In: 3rd Int Conf Bioinf Biomed Eng ICBBE 2009 11-13 June 2009 p 1-4

  • Salampessy J, Phillips M, Seneweera S, Kailasapathy K (2010) Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuchenia sp.) insoluble proteins. Food Chem 120(2):556–560. doi:10.1016/j.foodchem.2009.10.054

    CAS  Google Scholar 

  • Sangjindavong M, Mookdasanit J, Wilaipun P, Chuapoehuk P, Akkanvanitch C (2009) Using pineapple to produce fish sauce from surimi waste. Kasetsart J (Nat Sci) 43:791–795

    CAS  Google Scholar 

  • Scocca J, Lee YC (1969) The composition and structure of the carbohydrate of pineapple stem bromelain. J Biol Chem 244(18):4852–4863

    CAS  PubMed  Google Scholar 

  • Seo WH, Lee HG, Baek HH (2008) Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis. J Food Sci 73(1):41–46. doi:10.1111/j.1750-3841.2007.00610.x

    Google Scholar 

  • Shian MLP, Baharil NAS, Yu TL, Taher M, Majid FAA Pilot scale extraction of proteolytic enzyme bromelain from pineapple (Ananas comosus). In: 2nd Int Conf Chem Bioprocess Eng in conjunction with (SOMChE 2005), Kota Kinabalu, Sabah., 2005

  • Silva FVD, Santos RLA, Fujiki TL, Leite MS, Fileti AMF (2010) Design of automatic control system for the precipitation of bromelain from the extract of pineapple wastes. Food Sci Technol (Campinas) 30:1033–1040

    Google Scholar 

  • Silveira E, Souza-Jr ME, Santana JCC, Chaves AC, Porto ALF, Tambourgi EB (2009) Expanded bed adsorption of bromelain (E.C.3.4.22.33) from Ananas comosus crude extract. Braz J Chem Eng 26(01):149–157

    CAS  Google Scholar 

  • Singh LR, Devi YR, Devi SK (2003) Enzymological characterization of pineapple extract for potential application in oak tasar (Antheraea proylei J.) silk cocoon cooking and reeling. Electron J Biotechnol 6(3):198–207

    Google Scholar 

  • Soares PAG, Coelho D, Mazzola P, Silveira E, Carneiro-da-Cunha MG, Pessoa AJ, Tambourgi E (2011) Studies on bromelain precipitation by ethanol, poly (ethylene glycol) and ammonium sulphate. Chem Eng Trans 24(5):979–984. doi:10.3303/CET1124164

    Google Scholar 

  • Soares PAG, Vaz AFM, Correia MTS, Pessoa A Jr, Carneiro-da-Cunha MG (2012) Purification of bromelain from pineapple wastes by ethanol precipitation. Sep Purif Technol 98:389–395. doi:10.1016/j.seppur.2012.06.042

    CAS  Google Scholar 

  • Song M-M, Nie H-L, Zhou Y-T, Zhu L-M, Bao J-Y (2011) Affinity adsorption of bromelain on Reactive Red 120 immobilized magnetic composite particles. Sep Sci Technol 46(3):473–482. doi:10.1080/01496395.2010.517594

    CAS  Google Scholar 

  • Sonklin C, Laohakunjit N, Kerdchoechuen O (2011) Physicochemical and flavor characteristics of flavoring agent from mungbean protein hydrolyzed by bromelain. J Agric Food Chem 59(15):8475–8483. doi:10.1021/jf202006a

    CAS  PubMed  Google Scholar 

  • Srinath R, Ramalingam C, Nasimun Islam N (2012) Isolation and characterization of bromelain from pineapple (Ananas comosus) and comparing its anti-browning activity on apple juice with commercial antibrowning agents. Elixir Food Sci 45:7822–7826

    Google Scholar 

  • Staub A, Guillarme D, Schappler J, Veuthey J-L, Rudaz S (2011) Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 55(4):810–822. doi:10.1016/j.jpba.2011.01.031

    CAS  PubMed  Google Scholar 

  • Streiter PJ, Campbell CP, Mandell IB (2012) The effects of skeletal separation and moisture enhancement for improving the eating quality of cull cow beef. Meat Sci 92(4):400–408. doi:10.1016/j.meatsci.2012.05.002

    CAS  PubMed  Google Scholar 

  • Sullivan GA, Calkins CR (2010) Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Sci 85(4):730–734. doi:10.1016/j.meatsci.2010.03.033

    CAS  PubMed  Google Scholar 

  • Tanabe S, Arai S, Watanabe M (1996) Modification of wheat flour with bromelain and baking hypoallergenic bread with added ingredients. Biosci, Biotechnol, Biochem 60(8):1269–1272

    CAS  Google Scholar 

  • Tanuja S, Viji P, Zynudheen AA, Joshy CG (2012) Composition, functional properties and antioxidative activity of hydrolysates prepared from the frame meat of Striped catfish (Pangasianodon hypophthalmus). Egypt J Biol 14:27–35

    Google Scholar 

  • Tochi BN, Wang Z, Xu SY, Zhang W (2009) Effect of stem bromelain on the browning of apple juice. Am J Food Technol:1-8

  • Tománková O, Kopečný J (1995) Prediction of feed protein degradation in the rumen with bromelain. Anim Feed Sci Technol 53(1):71–80. doi:10.1016/0377-8401(94)00735-R

    Google Scholar 

  • Umesh Hebbar H, Sumana B, Raghavarao KSMS, Umesh Hebbar H, Sumana B, Raghavarao KSMS (2008) Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresour Technol 99:4896–4902. doi:10.1016/j.biortech.2007.09.038

    CAS  PubMed  Google Scholar 

  • Walsh G (2002) Proteins: biochemistry and biotechnology. John Wiley & Sons Ltd, England

    Google Scholar 

  • Watanabe M, Watanabe J, Sonoyama K, Tanabe S (2000) Novel method for producing hypoallergenic wheat flour by enzymatic fragmentation of the constituent allergens and its application to food processing. Biosci, Biotechnol, Biochem 64(12):2663–2667

    CAS  Google Scholar 

  • Watts A, Addy M (2001) Tooth discolouration and staining: tooth discolouration and staining: a review of the literature. Br Dent J 190(6):309–316. doi:10.1038/sj.bdj.4800959

    CAS  PubMed  Google Scholar 

  • Wharton CW (1974) The structure and mechanism of stem bromelain. Biochem J 143:575–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wheelwright SM (1991) Protein purification. Design and scale up of downstream processing. John Wiley & Sons, Inc

  • Yamada F, Takahashi N, Murachi T (1976) Purification and characterization of a proteinase from pineapple fruit, fruit bromelain FA2. J Biochem 79(6):1223–1234

    CAS  PubMed  Google Scholar 

  • Yasuda Y, Takahashi N, Murachi T (1970) Composition and structure of carbohydrate moiety of stem bromelain. Biochem 9(1):25–32. doi:10.1021/bi00803a004

    CAS  Google Scholar 

  • Yin L, Sun CK, Han X, Xu L, Xu Y, Qi Y, Peng J (2011) Preparative purification of bromelain (EC 3.4.22.33) from pineapple fruit by high-speed counter-current chromatography using a reverse-micelle solvent system. Food Chem 129(3):925–932. doi:10.1016/j.foodchem.2011.05.048

    CAS  Google Scholar 

  • Yoshioka S, Izutsu K-i, Aso Y, Takeda Y (1991) Inactivation kinetics of enzyme pharmaceuticals in aqueous solution. Pharm Res 8(4):480–484. doi:10.1023/a:1015899011324

    CAS  PubMed  Google Scholar 

  • Zhang H, Nie H, Yu D, Wu C, Zhang Y, White CJB, Zhu L (2010) Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption. Desalin 256(1–3):141–147. doi:10.1016/j.desal.2010.01.026

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azura Amid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arshad, Z.I.M., Amid, A., Yusof, F. et al. Bromelain: an overview of industrial application and purification strategies. Appl Microbiol Biotechnol 98, 7283–7297 (2014). https://doi.org/10.1007/s00253-014-5889-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5889-y

Keywords

  • Bromelain
  • Cysteine protease
  • Purification
  • Recombinant bromelain