Applied Microbiology and Biotechnology

, Volume 98, Issue 16, pp 7137–7147 | Cite as

Genes commonly involved in acid tolerance are not overexpressed in the plant microsymbiont Mesorhizobium loti MAFF303099 upon acidic shock

  • Marta Laranjo
  • Ana Alexandre
  • Solange Oliveira
Genomics, transcriptomics, proteomics


Rhizobia are legume bacterial symbionts that fix nitrogen in the root nodules of plants. The aim of the present study was to investigate the global transcriptional response of rhizobia upon an acidic shock. Changes in the transcriptome of cells of Mesorhizobium loti strain MAFF303099 upon an acidic shock at pH 3 for 30 min were analysed. From a total of 7,231 protein-coding genes, 433 were found to be differentially expressed upon acidic shock, of which 322 were overexpressed. Although most of the overexpressed genes encode hypothetical proteins, the two most represented Cluster of Orthologous Group (COG) categories are ‘defence mechanisms’ and ‘transcription’. Differentially expressed genes are dispersed throughout the chromosome, with the exception of the symbiosis island, where most genes remain unchanged. A significant number of transcriptional regulators and ABC transporter genes are overexpressed. No overexpression of genes typically associated to acid tolerance in rhizobia, such as act and exo genes, was detected. Overall, this study suggests a transcriptional response to acidic shock of M. loti distinct from other rhizobia. Additional studies are in course to explore the role of some of the highly overexpressed genes and to further elucidate the molecular bases of acid stress response.


Rhizobia Microarray Transcriptome Stress pH Acid 



This work was supported by Fundação para a Ciência e a Tecnologia (FCT), including the research projects FCOMP-01-0124-FEDER-007091, FCOMP-01-0124-FEDER-028316 (PTDC/BIA-EVF/4158/2012), the strategic Project PEst-OE/AGR/UI0115/2014 and InAlentejo Project ALENT-07-0262-FEDER-001871 that include FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE and national funds. M. Laranjo and A. Alexandre acknowledge Post-Doc fellowships (SFRH/BPD/27008/2006 and SFRH/BPD/73243/2010) from FCT. The authors thank Ana Catarina Gomes from Biocant Park (Portugal) for her helpful guidance through microarray data analysis and Owen Woody from the University of Waterloo (Canada) for his help with the DNAplotter software.

Supplementary material

253_2014_5875_MOESM1_ESM.pdf (703 kb)
ESM 1 (PDF 703 kb)


  1. Alexandre A, Oliveira S (2013) Response to temperature stress in rhizobia. Crit Rev Microbiol 39:219–228PubMedCrossRefGoogle Scholar
  2. Alexandre A, Laranjo M, Oliveira S (2014) Global transcriptional response to heat shock of the legume symbiont Mesorhizobium loti MAFF303099 comprises extensive gene downregulation. DNA Res 21:195–206PubMedCentralPubMedCrossRefGoogle Scholar
  3. Audia JP, Webb CC, Foster JW (2001) Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 291:97–106PubMedCrossRefGoogle Scholar
  4. Brígido C, Oliveira S (2013) Most acid-tolerant chickpea mesorhizobia show induction of major chaperone genes upon acid shock. Microb Ecol 65:145–153PubMedCrossRefGoogle Scholar
  5. Brígido C, Robledo M, Menendez E, Mateos PF, Oliveira S (2012) A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants. Mol Plant-Microbe Interact 25:1594–1604PubMedCrossRefGoogle Scholar
  6. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25:119–120PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen H, Gartner E, Rolfe BG (1993) Involvement of genes on a megaplasmid in the acid-tolerant phenotype of Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 59:1058–1064PubMedCentralPubMedGoogle Scholar
  8. Chen WX, Wang ET, Kuykendall D (2005) Genus VI. Mesorhizobium. In: Garrity G, Brenner DJ, Krieg NR, Staley JT (eds) Bergeys manual of systematic bacteriology. vol 2 (The Proteobacteria). Springer, New York, pp 403–408CrossRefGoogle Scholar
  9. Correa OS, Barneix AJ (1997) Cellular mechanisms of pH tolerance in Rhizobium loti. World J Microbiol Biotechnol 13:153–157CrossRefGoogle Scholar
  10. Correa OS, Rivas EA, Barneix AJ (1999) Cellular envelopes and tolerance to acid pH in Mesorhizobium loti. Curr Microbiol 38:329–334PubMedCrossRefGoogle Scholar
  11. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cunningham SD, Munns DN (1984) The correlation between extracellular polysaccharide production and acid tolerance in Rhizobium. Soil Sci Soc Am J 48:1273–1276CrossRefGoogle Scholar
  13. de Lucena DKC, Pühler A, Weidner S (2010) The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiol 10:265PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dilworth MJ, Howieson JG, Reeve WG, Tiwari RP, Glenn AR (2001) Acid tolerance in legume root nodule bacteria and selecting for it. Aust J Exp Agric 41:435–446CrossRefGoogle Scholar
  15. Fenner BJ, Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR (2004) Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol Lett 236:21–31PubMedCrossRefGoogle Scholar
  16. Foster JW (2001) Acid stress responses of Salmonella and E. coli: survival mechanisms, regulation, and implications for pathogenesis. J Microbiol 39:89–94Google Scholar
  17. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907PubMedCrossRefGoogle Scholar
  18. Glenn AR, Reeve WG, Tiwari RP, Dilworth MJ, Cook GM, Booth IR, Poole RK, Foster JW, Slonczewski JL, Padan E, Epstein W, Skulachev V, Matin A, Fillingame RH (1999) Acid tolerance in root nodule bacteria. In: Chadwick DJ, Cardew G (eds) Bacterial response to pH. Novartis Foundation Symposium, vol 221. John Wiley & Sons, Ltd, Chichester, pp 112–130Google Scholar
  19. Goodson M, Rowbury RJ (1989) Habituation to normally lethal acidity by prior growth of Escherichia coli at a sub-lethal acid pH value. Lett Appl Microbiol 8:77–79CrossRefGoogle Scholar
  20. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMedCentralPubMedCrossRefGoogle Scholar
  21. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106CrossRefGoogle Scholar
  22. Graham PH, Draeger KJ, Ferrey ML, Conroy MJ, Hammer BE, Martinez E, Aarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207CrossRefGoogle Scholar
  23. Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466PubMedCrossRefGoogle Scholar
  25. Hall HK, Karem KL, Foster JW (1995) Molecular responses of microbes to environmental pH stress. Adv Microb Physiol 37:229–272PubMedCrossRefGoogle Scholar
  26. Hellweg C, Pühler A, Weidner S (2009) The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 9:37PubMedCentralPubMedCrossRefGoogle Scholar
  27. Higgins CF (2001) ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 152:205–210PubMedCrossRefGoogle Scholar
  28. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  29. Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81PubMedCrossRefGoogle Scholar
  30. Kaufusi PH, Forsberg LS, Tittabutr P, Borthakur D (2004) Regulation of exopolysaccharide synthesis in Rhizobium sp. strain TAL1145 involves an alternative sigma factor gene, rpoH2. Microbiol-SGM 150:3473–3482CrossRefGoogle Scholar
  31. Laing E, Mersinias V, Smith C, Hubbard S (2006) Analysis of gene expression in operons of Streptomyces coelicolor. Genome Biol 7:R46PubMedCentralPubMedCrossRefGoogle Scholar
  32. Laranjo M, Oliveira S (2011) Tolerance of Mesorhizobium type strains to different environmental stresses. Anton Leeuw Int J G 99:651–662CrossRefGoogle Scholar
  33. Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17PubMedCrossRefGoogle Scholar
  34. Lee IS, Lin J, Hall HK, Bearson B, Foster JW (1995) The stationary-phase sigma factor σS (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol 17:155–167PubMedCrossRefGoogle Scholar
  35. Martín-Galiano AJ, Overweg K, Ferrandiz MJ, Reuter M, Wells JM, de la Campa AG (2005) Transcriptional analysis of the acid tolerance response in Streptococcus pneumoniae. Microbiol-SGM 151:3935–3946CrossRefGoogle Scholar
  36. Masloboeva N, Reutimann L, Stiefel P, Follador R, Leimer N, Hennecke H, Mesa S, Fischer H-M (2012) Reactive oxygen species-inducible ECF σ factors of Bradyrhizobium japonicum. PLoS ONE 7:e43421PubMedCentralPubMedCrossRefGoogle Scholar
  37. Österberg S, del Peso-Santos T, Shingler V (2011) Regulation of alternative sigma factor use. Annu Rev Microbiol 65:37–55PubMedCrossRefGoogle Scholar
  38. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29Google Scholar
  39. Price MN, Huang KH, Alm EJ, Arkin AP (2005) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33:880–892PubMedCentralPubMedCrossRefGoogle Scholar
  40. Reverchon S, Van Gijsegem F, Effantin G, Zghidi-Abouzid O, Nasser W (2010) Systematic targeted mutagenesis of the MarR/SlyA family members of Dickeya dadantii 3937 reveals a role for MfbR in the modulation of virulence gene expression in response to acidic pH. Mol Microbiol 78:1018–1037PubMedCrossRefGoogle Scholar
  41. Richardson AE, Simpson RJ, Djordjevic MA, Rolfe BG (1988) Expression of nodulation genes in Rhizobium leguminosarum biovar trifolii is affected by low pH and by Ca and Al ions. Appl Environ Microbiol 54:2541–2548PubMedCentralPubMedGoogle Scholar
  42. Ron EZ (2006) Bacterial stress response. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes: a handbook on the biology of bacteria—ecophysiology and biochemistry. vol 2, 3rd edn. Springer, New York, pp 1012–1027CrossRefGoogle Scholar
  43. Saeed AI, Hagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193PubMedCrossRefGoogle Scholar
  44. Simon R, Lam A, Li M-C, Ngan M, Menenzes S, Zhao Y (2007) Analysis of gene expression data using BRB-ArrayTools. Cancer Informat 3:11–17Google Scholar
  45. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568PubMedCentralPubMedCrossRefGoogle Scholar
  46. Terpolilli JJ, Hood GA, Poole PS, Robert KP (2012) Chapter 5—what determines the efficiency of N2-fixing Rhizobium-legume symbioses? In: Poole RK (ed) Adv Microb Physiol. Vol 60. Academic Press, London, pp 325–389CrossRefGoogle Scholar
  47. Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR (1996) Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiol-SGM 142:1693–1704CrossRefGoogle Scholar
  48. Tiwari RP, Reeve WG, Fenner BJ, Dilworth MJ, Glenn AR, Howieson JG (2004) Probing for pH-regulated genes in Sinorhizobium medicae using transcriptional analysis. J Mol Microbiol Biotechnol 7:133–139PubMedCrossRefGoogle Scholar
  49. Vincent JM (1970) A manual for the practical study of root-nodule bacteria, vol no. 15. Blackwell Scientific Publications, OxfordGoogle Scholar
  50. Wren JD, Conway T (2006) Meta-analysis of published transcriptional and translational fold changes reveals a preference for low-fold inductions. OMICS: J Integr Biol 10:15–27CrossRefGoogle Scholar
  51. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marta Laranjo
    • 1
    • 2
  • Ana Alexandre
    • 1
    • 2
  • Solange Oliveira
    • 1
    • 3
  1. 1.ICAAM-Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal
  2. 2.IIFA-Instituto de Investigação e Formação AvançadaUniversidade de ÉvoraÉvoraPortugal
  3. 3.Departamento de BiologiaUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations