Skip to main content

Advertisement

Log in

Phosphorylation of pyruvate kinase A by protein kinase J leads to the altered growth and differential rate of intracellular survival of mycobacteria

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

PknJ (Rv2088) is a serine/threonine protein kinase of mycobacteria which is present in Mycobacterium tuberculosis (MTB), but its gene is absent in Mycobacterium smegmatis (MS); a fast grower and nonpathogenic species of mycobacteria. The heterologous expression of MTB-specific PknJ in MS altered the growth of recombinant mycobacteria highlighting one of the characteristics of this protein. This nature of the protein was further confirmed when Mycobacterium bovis BCG (BCG) containing antisense copy of pknJ resulted in the increased growth of BCG. The real-time RNA quantification analysis pointed out toward increased expression of this protein during infection of THP-1 macrophage cells which further emphasized that the protein is essential for the intracellular survival of mycobacteria. The differential in gel electrophoresis (DIGE) data followed by mass spectroscopy suggested that PknJ is involved in regulation of pyruvate kinase A (Rv1617). Since pyruvate kinase (PK) A is one of the key enzymes which controls glycolytic cycle in mycobacteria, we looked for its interaction with PknJ during extracellular and intracellular growth of mycobacteria. In order to identify the specific residue(s) involved in post-translational modification, the phospho-null mutants of PK were generated, and their substrate specificities in response to PknJ were assessed through kinase assay. The findings thus underlined that the PK activity is predominantly dependent on the threonine residue at the 94th position and further suggested that this site may be plausible in intracellular survival of mycobacteria upon phosphorylation with PknJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arora G, Sajid A, Gupta M, Bhaduri A, Kumar P, Basu-Modak S, Singh Y (2010) Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One 5:e10772. doi:10.1371/journal.pone.0010772

    Article  PubMed Central  PubMed  Google Scholar 

  • Av-Gay Y, Everett M (2000) The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8:238–244

    Article  CAS  PubMed  Google Scholar 

  • Av-Gay Y, Jamil S, Drews SJ (1999) Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun 67:5676–5682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bach H, Wong D, Av-Gay Y (2009) Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J 420:155–160. doi:10.1042/BJ20090478

    Article  CAS  PubMed  Google Scholar 

  • Baughn AD, Garforth SJ, Vilchèze C, Jacobs WR (2009) An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. PLoS Pathog 5:e1000662. doi:10.1371/journal.ppat.1000662

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaba R, Raje M, Chakraborti PK (2002) Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur J Biochem/FEBS 269:1078–1085

    Article  CAS  Google Scholar 

  • Chaurasiya SK, Srivastava KK (2009) Downregulation of protein kinase C-alpha enhances intracellular survival of mycobacteria: role of PknG. BMC Microbiol 9:271. doi:10.1186/1471-2180-9-271

    Article  PubMed Central  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233. doi:10.1038/nature06734

    Article  CAS  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008b) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186. doi:10.1038/nature06667

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. doi:10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  • Deol P, Vohra R, Saini AK, Singh A, Chandra H, Chopra P, Das TK, Tyagi AK, Singh Y (2005) Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol 187:3415–3420. doi:10.1128/JB.187.10.3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gopalaswamy R, Narayanan PR, Narayanan S (2004) Cloning, overexpression, and characterization of a serine/threonine protein kinase pknI from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 36:82–89. doi:10.1016/j.pep.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  • Hsieh PC, Shenoy BC, Jentoft JE, Phillips NF (1993) Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly (P) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr Purif 4:76–84

    Article  CAS  PubMed  Google Scholar 

  • Jang J, Stella A, Boudou F, Levillain F, Darthuy E, Vaubourgeix J, Wang C, Bardou F, Puzo G, Gilleron M, Burlet-Schiltz O, Monsarrat B, Brodin P, Gicquel B, Neyrolles O (2010) Functional characterization of the Mycobacterium tuberculosis serine/threonine kinase PknJ. Microbiology 156:1619–1631. doi:10.1099/mic.0.038133-0

    Article  CAS  PubMed  Google Scholar 

  • Kang C-M, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704. doi:10.1101/gad.1311105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV (2005) The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56:163–174. doi:10.1111/j.1365-2958.2005.04524.x

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Nagarajan SN, Parikh A, Samantaray S, Singh A, Kumar D, Roy RP, Bhatt A, Nandicoori VK (2010) Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J Biol Chem 285:37860–37871. doi:10.1074/jbc.M110.143131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koul A, Choidas A, Tyagi AK, Drlica K, Singh Y (2001) Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology 147:2307–2314

    CAS  PubMed  Google Scholar 

  • Kumar P, Kumar D, Parikh A, Rananaware D, Gupta M, Singh Y, Nandicoori VK (2009) The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J Biol Chem 284:11090–11099. doi:10.1074/jbc.M808705200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumari R, Singh SK, Singh DK, Singh PK, Chaurasiya SK, Srivastava KK (2012) Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol Cell Biochem 369:67–74. doi:10.1007/s11010-012-1369-9

    Article  CAS  PubMed  Google Scholar 

  • Molle V, Girard-blanc C, Kremer L, Doublet P, Cozzone AJ, Lyon D, National C, Recherche D (2003a) Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 308:820–825. doi:10.1016/S0006-291X(03)01476-1

    Article  CAS  PubMed  Google Scholar 

  • Molle V, Kremer L, Girard-Blanc C, Besra GS, Cozzone AJ, Prost J-F (2003b) An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry 42:15300–15309. doi:10.1021/bi035150b

    Article  CAS  PubMed  Google Scholar 

  • Molle V, Soulat D, Jault JM, Grangeasse C, Cozzone AJPJ (2004) Two FHA domains on an ABC transporter, Rv1747, mediate its phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium tuberculosis. FEMS Microbiol Lett 234:215–223

    Article  CAS  PubMed  Google Scholar 

  • Narayan A, Sachdeva P, Sharma K, Saini AK, Tyagi AK, Singh Y (2007) Serine threonine protein kinases of mycobacterial genus : phylogeny to function. Physiol Genomics 29:66–75. doi:10.1152/physiolgenomics.00221.2006

    Article  CAS  PubMed  Google Scholar 

  • Peirs P, Parmentier B, De Wit L, Content J (2000) The Mycobacterium bovis homologous protein of the Mycobacterium tuberculosis serine/threonine protein kinase Mbk (PknD) is truncated. FEMS Microbiol Lett 188:135–139

    Article  CAS  PubMed  Google Scholar 

  • Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994. doi:10.1073/pnas.2134250100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schreiber M, Res I, Matter A (2009) Protein kinases as antibacterial targets. Curr Opin Cell Biol 21:325–330. doi:10.1016/j.ceb.2009.01.026

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741. doi:10.1111/j.1365-2958.2009.06897.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SK, Kumari R, Singh DK, Tiwari S, Singh PK, Sharma S, Srivastava KK (2013a) Putative roles of a proline-glutamic acid-rich protein (PE3) in intracellular survival and as a candidate for subunit vaccine against Mycobacterium tuberculosis. Med Microbiol Immunol 202:365–377. doi:10.1007/s00430-013-0299-9

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Tripathi DK, Singh PK, Sharma S, Srivastava KK (2013b) Protective and survival efficacies of Rv0160c protein in murine model of Mycobacterium tuberculosis. Appl Microbiol Biotechnol 97:5825–5837. doi:10.1007/s00253-012-4493-2

    Article  CAS  PubMed  Google Scholar 

  • Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Alzari PM (2005) Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 350:953–963. doi:10.1016/j.jmb.2005.05.049

    Article  CAS  PubMed  Google Scholar 

  • Zoraghi R, See RH, Gong H, Lian T, Swayze R, Finlay BB, Brunham RC, McMaster WR, Reiner NE (2010) Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry 49:7733–7747. doi:10.1021/bi100780t

    Article  CAS  PubMed  Google Scholar 

  • Zoraghi R, See RH, Axerio-Cilies P, Kumar NS, Gong H, Moreau A, Hsing M, Kaur S, Swayze RD, Worrall L, Amandoron E, Lian T, Jackson L, Jiang J, Thorson L, Labriere C, Foster L, Brunham RC, McMaster WR, Finlay BB, Strynadka NC, Cherkasov A, Young RN, Reiner NE (2011) Identification of pyruvate kinase in methicillin-resistant Staphylococcus aureus as a novel antimicrobial drug target. Antimicrob Agents Chemother 55:2042–2053. doi:10.1128/AAC.01250-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Director of Council of Scientific and Industrial Research—Central Drug Research Institute (CSIR-CDRI) for his encouragement and support. Financial supports by CSIR-UNDO and CSIR-SPLENDID are acknowledged. We thank Dr. J. K. Saxena for allowing us to use his facility for biochemical assay. The CSIR-CDRI communication allotted to this manuscript is 8705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore K. Srivastava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.K., Singh, P.K., Tiwari, S. et al. Phosphorylation of pyruvate kinase A by protein kinase J leads to the altered growth and differential rate of intracellular survival of mycobacteria. Appl Microbiol Biotechnol 98, 10065–10076 (2014). https://doi.org/10.1007/s00253-014-5859-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5859-4

Keywords