Skip to main content

Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2

Abstract

The widespread agricultural application of carbofuran and concomitant contamination of surface and ground waters has raised health concerns due to the reported toxic effects of this insecticide and its degradation products. Most bacteria that degrade carbofuran only perform partial degradation involving carbamate hydrolysis without breakdown of the resulting phenolic metabolite. The capacity to mineralize carbofuran beyond the benzofuran ring has been reported for some bacterial strains, especially sphingomonads, and some common metabolites, including carbofuran phenol, were identified. In the current study, the catabolism of carbofuran by Novosphingobium sp. KN65.2 (LMG 28221), a strain isolated from a carbofuran-exposed Vietnamese soil and utilizing the compound as a sole carbon and nitrogen source, was studied. Several KN65.2 plasposon mutants with diminished or abolished capacity to degrade and mineralize carbofuran were generated and characterized. Metabolic profiling of representative mutants revealed new metabolic intermediates, in addition to the initial hydrolysis product carbofuran phenol. The promiscuous carbofuran-hydrolyzing enzyme Mcd, which is present in several bacteria lacking carbofuran ring mineralization capacity, is not encoded by the Novosphingobium sp. KN65.2 genome. An alternative hydrolase gene required for this step was not identified, but the constitutively expressed genes of the unique cfd operon, including the oxygenase genes cfdC and cfdE, could be linked to further degradation of the phenolic metabolite. A third involved oxygenase gene, cfdI, and the transporter gene cftA, encoding a TonB-dependent outer membrane receptor with potential regulatory function, are located outside the cfd cluster. This study has revealed the first dedicated carbofuran catabolic genes and provides insight in the early steps of benzofuran ring degradation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, Woyke T, Currie CR, Suen G, Poulsen M (2013) Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79(12):3724–3733. doi:10.1128/Aem.00518-13

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  2. Bermingham A, Derrick JP (2002) The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24:637–648. doi:10.1002/Bies.10114

    PubMed  CAS  Article  Google Scholar 

  3. Caldas SS, Demoliner A, Costa FP, D'Oca MGM, Primel EG (2010) Pesticide residue determination in groundwater using solid-phase extraction and high-performance liquid chromatography with diode array detector and liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 21(4):642–650. doi:10.1590/S0103-50532010000400009

    CAS  Article  Google Scholar 

  4. Castellanos J, Sánchez J, Uribe D, Moreno L, Melgarejo LM (2013) Characterization of carbofuran degrading bacteria obtained from potato cultivated soils with different pesticide application records. Rev Fac Nal Agr Medellín 66:6899–6908

    Google Scholar 

  5. Chapalamadugu S, Chaudhry GR (1992) Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit Rev Biotechnol 12(5–6):357–389. doi:10.3109/07388559209114232

    PubMed  CAS  Article  Google Scholar 

  6. Chaudhry GR, Ali HD (1988) Bacterial metabolism of carbofuran. Appl Environ Microbiol 54(1414):1419

    Google Scholar 

  7. Chaudhry GR, Mateen A, Kaskar B, Sardessai M, Bloda M, Bhatti AR, Walia SK (2002) Induction of carbofuran oxidation to 4-hydroxycarbofuran by Pseudomonas sp. 50432. FEMS Microbiol Lett 214(2):171–176. doi:10.1016/s0378-1097(02)00851-0

    PubMed  CAS  Article  Google Scholar 

  8. Chen HP, Zhu SH, Casabon I, Hallam SJ, Crocker FH, Mohn WW, Indest KJ, Eltis LD (2012) Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium. Appl Environ Microbiol 78(21):7798–7800. doi:10.1128/Aem.02120-12

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  9. Chiron S, Valverde A, FernandezAlba A, Barcelo D (1995) Automated sample preparation for monitoring groundwater pollution by carbamate insecticides and their transformation products. J AOAC Int 78(6):1346–1352

    PubMed  CAS  Google Scholar 

  10. Chowdhury MAZ, Banik S, Uddin B, Moniruzzaman M, Karim N, Gan SH (2012) Organophosphorus and carbamate pesticide residues detected in water samples collected from paddy and vegetable fields of the Savar and Dhamrai Upazilas in Bangladesh. Int J Environ Res Public Health 9(9):3318–3329. doi:10.3390/ijerph9093318

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  11. Cuthbertson L, Nodwell JR (2013) The TetR family of regulators. Microbiol Mol Biol Rev 77(3):440–475. doi:10.1128/Mmbr.00018-13

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  12. D'Argenio V, Petrillo M, Cantiello P, Naso B, Cozzuto L, Notomista E, Paolella G, Di Donato A, Salvatore F (2011) De novo sequencing and assembly of the whole genome of Novosphingobium sp. strain PP1Y. J Bacteriol 193(16):4296

    PubMed  PubMed Central  Article  Google Scholar 

  13. Dasgupta S, Meisner C, Wheeler D, Xuyen K, Lam NT (2007) Pesticide poisoning of farm workers - implications of blood test results from Vietnam. Int J Hyg Environ Health 210(2):121–132. doi:10.1016/j.ijheh.2006.08.006

    PubMed  CAS  Article  Google Scholar 

  14. De Llasera MPG, Bernal-Gonzalez M (2001) Presence of carbamate pesticides in environmental waters from the northwest of Mexico: determination by liquid chromatography. Water Res 35(8):1933–1940

    Article  Google Scholar 

  15. Desaint S, Hartmann A, Parekh NR, Fournier JC (2000) Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol Ecol 34(2):173–180. doi:10.1111/j.1574-6941.2000.tb00767.x

    PubMed  CAS  Article  Google Scholar 

  16. Desaint S, Arrault S, Siblot S, Fournier JC (2003) Genetic transfer of the mcd gene in soil. J Appl Microbiol 95(1):102–108. doi:10.1046/j.1365-2672.2003.01965.x

    PubMed  CAS  Article  Google Scholar 

  17. Dresen C, Lin LY, D'Angelo I, Tocheva EI, Strynadka N, Eltis LD (2010) A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285(29):22264–22275. doi:10.1074/jbc.M109.099028

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  18. Fahmy MAH, Fukuto TR, Myers RO, March RB (1970) Selective toxicity of new N-phosphorothioylcarbamate esters. J Agric Food Chem 18(5):793–796. doi:10.1021/jf60171a014

    PubMed  CAS  Article  Google Scholar 

  19. Feng XH, Ou LT, Ogram A (1997) Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06. Appl Environ Microbiol 63(4):1332–1337

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Fida TT, Breugelmans P, Lavigne R, van der Meer JR, De Mot R, Vaysse PJ, Springael D (2014) Identification of opsA, a gene involved in solute stress mitigation and survival in soil, in the polycyclic aromatic hydrocarbon-degrading Novosphingobium sp. strain LH128. Appl Environ Microbiol 80(11):3350–3361. doi:10.1128/AEM.00306-14

  21. Gabriel FL, Cyris M, Jonkers N, Giger W, Guenther K, Kohler HP (2007) Elucidation of the ipso-substitution mechanism for side-chain cleavage of alpha-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram. Appl Environ Microbiol 73(10):3320–3326. doi:10.1128/AEM.02994-06

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  22. Gao JF, Ellis LBM, Wackett LP (2011) The university of Minnesota pathway prediction system: multi-level prediction and visualization. Nucleic Acids Res 39:W406–W411. doi:10.1093/Nar/Gkr200

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  23. Goad RT, Goad JT, Atieh BH, Gupta RC (2004) Carbofuran-induced endocrine disruption in adult male rats. Toxicol Mech Methods 14(4):233–239. doi:10.1080/15376520490434476

    PubMed  CAS  Article  Google Scholar 

  24. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704. doi:10.1080/10635150390235520

    PubMed  Article  Google Scholar 

  25. Gupta RC (1994) Carbofuran toxicity. J Toxicol Environ Health 43(4):383–418

    PubMed  CAS  Article  Google Scholar 

  26. Hamed RB, Batchelar ET, Clifton IJ, Schofield CJ (2008) Mechanisms and structures of crotonase superfamily enzymes—how nature controls enolate and oxyanion reactivity. Cell Mol Life Sci 65:2507–2527. doi:10.1007/s00018-008-8082-6

    PubMed  CAS  Article  Google Scholar 

  27. Hartmann EM, Armengaud J (2014) Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1. Environ Microbiol 16:162–176. doi:10.1111/1462-2920.12264

    PubMed  CAS  Article  Google Scholar 

  28. Hashimoto M, Fukui M, Hayano K, Hayatsu M (2002) Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 68(3):1220–1227. doi:10.1128/Aem.68.3.1220-1227.2002

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  29. Hashimoto M, Mizutani A, Tago K, Ohnishi-Kameyama M, Shimojo T, Hayatsu M (2006) Cloning and nucleotide sequence of carbaryl hydrolase gene (cahA) from Arthrobacter sp. RC100. J Biosci Bioeng 101:410–414. doi:10.1263/Jbb.101.410

    PubMed  CAS  Article  Google Scholar 

  30. Head IM, Cain RB, Suett DL (1992) Characterization of a carbofuran-degrading bacterium and investigation of the role of plasmids in catabolism of the insecticide carbofuran. Arch Microbiol 158(4):302–308. doi:10.1007/Bf00245249

    PubMed  CAS  Article  Google Scholar 

  31. Heider J (2001) A new family of CoA-transferases. FEBS Lett 509(3):345–349. doi:10.1016/s0014-5793(01)03178-7

    PubMed  CAS  Article  Google Scholar 

  32. Helbling DE, Hollender J, Kohler HPE, Singer H, Fenner K (2010) High-throughput identification of microbial transformation products of organic micropollutants. Environ Sci Technol 44:6621–6627. doi:10.1021/es100970m

    PubMed  CAS  Article  Google Scholar 

  33. Held JM, Schilling B, D'Souza AK, Srinivasan T, Behring JB, Sorensen DJ, Benz CC, Gibson BW (2013) Label-free quantitation and mapping of the ErbB2 tumor receptor by multiple protease digestion with data-dependent (MS1) and data-independent (MS2) acquisitions. Int J Proteomics 2013:791985. doi:10.1155/2013/791985

    PubMed  PubMed Central  Article  Google Scholar 

  34. Kaczmarczyk A, Campagne S, Danza F, Metzger LC, Vorholt JA, Francez-Charlot A (2011) Role of Sphingomonas sp. strain Fr1 PhyR-NepR-sigmaEcfG cascade in general stress response and identification of a negative regulator of PhyR. J Bacteriol 193(23):6629–6638. doi:10.1128/JB.06006-11

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  35. Karns JS, Tomasek PH (1991) Carbofuran hydrolase—purification and properties. J Agric Food Chem 39:1004–1008. doi:10.1021/Jf00005a041

    CAS  Article  Google Scholar 

  36. Karns JS, Mulbry WW, Nelson JO, Kearney PC (1986) Metabolism of carbofuran by a pure bacterial culture. Pestic Biochem Physiol 25(2):211–217. doi:10.1016/0048-3575(86)90048-9

    CAS  Article  Google Scholar 

  37. Kaur B, Khera A, Sandhir R (2012) Attenuation of cellular antioxidant defense mechanisms in kidney of rats intoxicated with carbofuran. J Biochem Mol Toxicol 26(10):393–398. doi:10.1002/jbt.21433

    PubMed  CAS  Article  Google Scholar 

  38. Kim IS, Ryu JY, Hur HG, Gu MB, Kim SD, Shim JH (2004) Sphingomonas sp. strain SB5 degrades carbofuran to a new metabolite by hydrolysis at the furanyl ring. J Agric Food Chem 52:2309–2314. doi:10.1021/jf035502l

    PubMed  CAS  Article  Google Scholar 

  39. Koebnik R (2005) TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol 13:343–347. doi:10.1016/j.tim.2005.06.005

    PubMed  CAS  Article  Google Scholar 

  40. Larsen RA, Wilson MM, Guss AM, Metcalf WW (2002) Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178(3):193–201. doi:10.1007/s00203-002-0442-2

    PubMed  CAS  Article  Google Scholar 

  41. Luo YR, Kang SG, Kim SJ, Kim MR, Li N, Lee JH, Kwon KK (2012) Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J Bacteriol 194(4):907. doi:10.1128/JB.06476-11

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  42. Masai E, Sasaki M, Minakawa Y, Abe T, Sonoki T, Miyauchi K, Katayama Y, Fukuda M (2004) A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. J Bacteriol 186(9):2757–2765

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  43. Milatovic D, Gupta RC, Dekundy A, Montine TJ, Dettbarn WD (2005) Carbofuran-induced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine. Toxicol 208:13–24. doi:10.1016/j.tox.2004.11.004

    CAS  Article  Google Scholar 

  44. Naqvi T, Cheesman MJ, Williams MR, Campbell PM, Ahmed S, Russell RJ, Scott C, Oakeshott JG (2009) Heterologous expression of the methyl carbamate-degrading hydrolase Mcd. J Biotechnol 144(2):89–95. doi:10.1016/j.jbiotec.2009.09.009

    PubMed  CAS  Article  Google Scholar 

  45. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. doi:10.1146/annurev.micro.112408.134247

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  46. Ogram AV, Duan YP, Trabue SL, Feng X, Castro H, Ou LT (2000) Carbofuran degradation mediated by three related plasmid systems. FEMS Microbiol Ecol 32(3):197–203. doi:10.1111/j.1574-6941.2000.tb00712.x

    CAS  Article  Google Scholar 

  47. Parekh NR, Hartmann A, Charnay MP, Fournier JC (1995) Diversity of carbofuran-degrading soil bacteria and detection of plasmid-encoded sequences homologous to the mcd gene. FEMS Microbiol Ecol 17(3):149–160. doi:10.1111/j.1574-6941.1995.tb00138.x

    CAS  Article  Google Scholar 

  48. Park MR, Lee S, Han TH, Oh BT, Shim JH, Kim IS (2006) A new intermediate in the degradation of carbofuran by Sphingomonas sp. strain SB5. J Microbiol Biotechnol 16(8):1306–1310

    CAS  Google Scholar 

  49. Plangklang P, Reungsang A (2012) Isolation and characterisation of a carbofuran degrading Burkholderia sp. PCL3 from carbofuran-phytoremediated rhizosphere soil. Chem Ecol 28:253–266. doi:10.1080/02757540.2011.645032

    CAS  Article  Google Scholar 

  50. Ramanand K, Sharmila M, Singh N, Sethunathan N (1991) Metabolism of carbamate insecticides by resting cells and cell-free preparations of a soil bacterium, Arthrobacter sp. Bull Environ Contam Toxicol 46(3):380–386

    PubMed  CAS  Article  Google Scholar 

  51. Ran T, Gao Y, Marsh M, Zhu W, Wang M, Mao X, Xu L, Xu D, Wang W (2013) Crystal structures of Cg1458 reveal a catalytic lid domain and a common catalytic mechanism for the FAH family. Biochem J 449(1):51–60. doi:10.1042/BJ20120913

    PubMed  CAS  Article  Google Scholar 

  52. Ricken B, Corvini PFX, Cichocka D, Parisi M, Lenz M, Wyss D, Martinez-Lavanchy PM, Muller JA, Shahgaldian P, Tulli LG, Kohler HPE, Kolvenbach BA (2013) ipso-Hydroxylation and subsequent fragmentation: a novel microbial strategy to eliminate sulfonamide antibiotics. Appl Environ Microbiol 79(18):5550–5558. doi:10.1128/Aem.00911-13

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  53. Salama AK (1998) Metabolism of carbofuran by Aspergillus niger and Fusarium graminearum. J Environ Sci Health B 33:253–266. doi:10.1080/03601239809373142

    PubMed  CAS  Article  Google Scholar 

  54. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  55. Saxena A, Anand S, Dua A, Sangwan N, Khan F, Lal R (2013) Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 63:2160–2167. doi:10.1099/ijs.0.045443-0

    PubMed  CAS  Article  Google Scholar 

  56. Seo J, Jeon J, Kim S-D, Kang S, Han J, Hur H-G (2007) Fungal biodegradation of carbofuran and carbofuran phenol by the fungus Mucor ramannianus: identification of metabolites. Water Sci Technol 55(1–2):163–167. doi:10.2166/wst.2007.051

    PubMed  CAS  Article  Google Scholar 

  57. Shin DH, Kim DU, Seong CN, Song HG, Ka JO (2012) Genetic and phenotypic diversity of carbofuran-degrading bacteria isolated from agricultural soils. J Microbiol Biotechnol 22(4):448–456. doi:10.4014/jmb.1108.08087

    PubMed  CAS  Article  Google Scholar 

  58. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in-vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol 1:784–791. doi:10.1038/nbt1183-784

    CAS  Article  Google Scholar 

  59. Tariq MI, Afzal S, Hussain I (2006) Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan. Environ Res 100:184–196. doi:10.1016/j.envres.2005.05.002

    PubMed  CAS  Article  Google Scholar 

  60. Tomasek PH, Karns JS (1989) Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in Gram-negative bacteria. J Bacteriol 171(7):4038–4044

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Topp E, Hanson RS, Ringelberg DB, White DC, Wheatcroft R (1993) Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl Environ Microbiol 59(10):3339–3349

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 - new capabilities and interfaces. Nucleic Acids Res 40(15):e115. doi:10.1093/nar/gks596

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  63. Uyttebroek M, Breugelmans P, Janssen M, Wattiau P, Joffe B, Karlson U, Ortega-Calvo JJ, Bastiaens L, Ryngaert A, Hausner M, Springael D (2006) Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil. Environ Microbiol 8:836–847. doi:10.1111/j.1462-2920.2005.00970.x

    PubMed  CAS  Article  Google Scholar 

  64. van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124(4):670–689. doi:10.1016/j.jbiotec.2006.03.044

    PubMed  Article  Google Scholar 

  65. van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104:1947–1952. doi:10.1073/pnas.0605728104

    PubMed  PubMed Central  Article  Google Scholar 

  66. Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43(1):1–10. doi:10.1016/j.watres.2008.09.021

    PubMed  CAS  Article  Google Scholar 

  67. Yan QX, Hong Q, Han P, Dong XJ, Shen YJ, Li SP (2007) Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3. FEMS Microbiol Lett 271(2):207–213. doi:10.1111/j.1574-6968.2007.00718.x

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Flemish Interuniversity Council (VLIR-UOS) of Belgium (BBTP2007-0012-1087), the joint support of the International Foundation for Science and Organisation for the Prohibition of Chemical Weapons (IFS/OPCW) (C/4563-1), and the EU FP7 projects BIOTREAT (EU grant 266039) and AQUAREHAB (EU grant ENV 2008.3.1.1.1.). We thank Kenneth Simoens for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dirk Springael.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 905 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.P.O., Helbling, D.E., Bers, K. et al. Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Appl Microbiol Biotechnol 98, 8235–8252 (2014). https://doi.org/10.1007/s00253-014-5858-5

Download citation

Keywords

  • Methylcarbamate
  • Sphingomonad
  • Proteomics
  • Metabolites
  • cfd genes