Skip to main content

Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes

Abstract

The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon–carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Beigi M, Loschonsky S, Lehwald P, Brecht V, Andrade SLA, Leeper FJ, Hummel W, Müller M (2013) α-Hydroxy-β-keto acid rearrangement–decarboxylation: impact on ThDP-dependent enzymatic transformations. Org Biomol Chem 11:252–256. doi:10.1039/c2ob26981c

    Article  CAS  PubMed  Google Scholar 

  • Betancor L, Fernandez MJ, Weissman KJ, Leadlay PF (2008) Improved catalytic activity of a purified multienzyme from a modular polyketide synthase after coexpression with Streptomyces chaperonins in Escherichia coli. ChemBioChem 9:2962–2966. doi:10.1002/cbic.200800475

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Breslow R (1958) On the mechanism of thiamine action. IV. Evidence from studies on model systems. J Am Chem Soc 80:3719–3726. doi:10.1021/ja01547a064

    Article  CAS  Google Scholar 

  • Cerdeno AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8:817–829. doi:10.1016/S1074-5521(01)00054-0

    Article  CAS  PubMed  Google Scholar 

  • Crout DHG, Hedgecock CJR (1979) The base-catalysed rearrangement of α-acetolactate (2-hydroxy-2-methyl-3-oxobutanoate): a novel carboxylate ion migration in a tertiary ketol rearrangement. J Chem Soc Perkin Trans 1:1982–1989. doi:10.1039/P19790001982

    Article  Google Scholar 

  • DiRocco D, Rovis T (2011) Catalytic asymmetric intermolecular Stetter reaction of enals with nitroalkenes: enhancement of catalytic efficiency through bifunctional additives. J Am Chem Soc 133:10402–10405. doi:10.1021/ja203810b

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dresen C (2008) α,β-ungesättigte Carbonyle als Substrate für asymmetrische C-C-Additionen mit Thiamindiphosphat (ThDP)-abhängigen Enzymen. Dissertation, Albert-Ludwigs-Universität Freiburg

  • Dresen C, Richter M, Pohl M, Lüdeke S, Müller M (2010) The enzymatic asymmetric conjugate umpolung reaction. Angew Chem Int Ed 49:6600–6603. doi:10.1002/anie.201000632

    Article  CAS  Google Scholar 

  • Dünnwald T, Demir AS, Siegert P, Pohl M, Müller M (2000) Enantioselective synthesis of (S)-2-hydroxy propanone derivatives by benzoylformate decarboxylase catalyzed C-C-bond formation. Eur J Org Chem 2161–2170

  • Enders D, Han J, Henseler A (2008) Asymmetric intermolecular Stetter reactions catalyzed by a novel triazolium derived N-heterocyclic carbene. Chem Commun 3989–3991. doi:10.1039/B809913H

  • Gocke D, Nguyen CL, Pohl M, Stillger T, Walter L, Müller M (2007) Branched-chain ketoacid decarboxylase from Lactococcus lactis (KdcA), a new thiamin diphosphate-dependent enzyme for asymmetric C-C bond formation. Adv Synth Catal 349:1425–1435. doi:10.1002/adsc.200700057

    Article  CAS  Google Scholar 

  • Hailes HC, Rother D, Müller M, Westphal R, Ward JM, Pleiss J, Vogel C, Pohl M (2013) Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J 280:6374–6394. doi:10.1111/febs.12496

    Article  CAS  PubMed  Google Scholar 

  • Hawkins CF, Borges A, Perham RN (1989) A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 255:77–82. doi:10.1016/0014-5793(89)81064-6

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Sakurai F, Nagatsuka S, Hayakawa Y (2009) Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis. J Antibiot 62:271–276. doi:10.1038/ja.2009.27

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Lee JS, Park YK, Kim JF, Jeong H, Oh TK, Kim BS, Lee CH (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102:937–944. doi:10.1111/j.1365-2672.2006.03172.x

    CAS  PubMed  Google Scholar 

  • Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK (2008) Red to red—the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18:1621–1629. doi:10.4014/jmb.2008.18.10.1621

    CAS  PubMed  Google Scholar 

  • Kwon S, Park Y, Kim JF (2010) Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl Environ Microbiol 76:1661–1668. doi:10.1128/AEM.01468-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JS, Kim Y, Park S, Kim J, Kang S, Lee M, Ryu S, Choi JM, Oh T, Yoon J (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl Environ Microbiol 77:4967–4973. doi:10.1128/AEM.01986-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehwald P (2010) Biokatalytische Synthese tertiärer Alkohole mittels asymmetrischer Carboligationsreaktion unter Verwendung eines Thiamindiphosphat-abängigen Enzyms. Dissertation, Albert-Ludwigs-Universität Freiburg

  • Liu Q, Perreault S, Rovis T (2008) Catalytic asymmetric intermolecular Stetter reaction of glyoxamides with alkylidenemalonates. J Am Chem Soc 130:14066–14067. doi:10.1021/ja805680z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger KE, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2:22–33. doi:10.1021/sb3000657

    Article  CAS  PubMed  Google Scholar 

  • Loschonsky S, Waltzer S, Brecht V, Müller M (2014) Elucidation of the enantioselective cyclohexane-1,2-dione hydrolase (CDH) catalyzed formation of (S)-acetoin. ChemCatChem 6:969–972. doi:10.1002/cctc.201300904

    Article  CAS  Google Scholar 

  • Müller M, Gocke D, Pohl M (2009) Exploitation of ThDP-dependent enzymes for asymmetric chemoenzymatic synthesis. FEBS J 276:2894–2904. doi:10.1111/j.1742-4658.2009.07017.x

    Article  PubMed  Google Scholar 

  • Müller M, Sprenger GA, Pohl M (2013) C–C bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 17:261–270. doi:10.1016/j.cbpa.2013.02.017

    Article  PubMed  Google Scholar 

  • Schloss PD, Allen HK, Klimowicz AK, Mlot C, Gross JA, Savengsuksa S, McEllin J, Clardy J, Ruess JW, Handelsman J (2010) Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol 29:533–541. doi:10.1089/dna.2010.1020

    Article  CAS  PubMed  Google Scholar 

  • Seebach D (1979) Methods of reactivity umpolung. Angew Chem Int Ed Engl 18:239–258. doi:10.1002/anie.197902393

    Article  Google Scholar 

  • Stetter H (1976) Catalyzed addition of aldehydes to activated double bonds—a new synthetic approach. Angew Chem Int Ed Engl 15:639–647. doi:10.1002/anie.197606391

    Article  Google Scholar 

  • Stetter H, Schreckenberg M (1973) A new method for addition of aldehydes to activated double bonds. Angew Chem Int Ed Engl 12:81. doi:10.1002/anie.197300811

    Article  Google Scholar 

  • Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218. doi:10.1038/35025116

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yuan Y, Zhou L, Su Q, Fang X, Li T, Wang J, Chang D, Su L, Xu G, Guo Y, Yang R, Liu C (2012) Draft genome sequence of Serratia marcescens strain LCT-SM213. J Bacteriol 194:4477–4478. doi:10.1128/JB.00933-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson NR, Simonsen HT, Ahmed RAA, Goldet G, Slater H, Woodley L, Leeper FJ, Salmond GPC (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56:971–989. doi:10.1111/j.1365-2958.2005.04602.x

    Article  CAS  PubMed  Google Scholar 

  • Xie B, Shu Y, Qin Q, Rong J, Zhang X, Chen X, Zhou B, Zhang Y (2012) Genome sequence of the cycloprodigiosin-producing bacterial strain Pseudoalteromonas rubra ATCC 29570T. J Bacteriol 194:1637–1638. doi:10.1128/JB.06822-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the scope of the Research Group FOR 1296. We are grateful to Prof. Peter Leadlay, University of Cambridge, and Dr. Wolfgang Hüttel, Albert-Ludwigs-Universität Freiburg, for providing plasmid pL1SL2 and for helpful discussions. The technical assistance of Fabrizio Bonina, Volker Brecht, Wolfgang Kornberger, and Simon Waltzer, Albert-Ludwigs-Universität Freiburg, is gratefully acknowledged. We thank Dr. Mostafa Zarei, Center for Biological Systems Analysis, Freiburg, for MS determinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 246 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kasparyan, E., Richter, M., Dresen, C. et al. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes. Appl Microbiol Biotechnol 98, 9681–9690 (2014). https://doi.org/10.1007/s00253-014-5850-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5850-0

Keywords

  • 1,4-Carboligation
  • Biocatalysis
  • C–C coupling
  • Chemoenzymatic synthesis
  • Umpolung