Abstract
The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon–carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.
This is a preview of subscription content, access via your institution.



References
Beigi M, Loschonsky S, Lehwald P, Brecht V, Andrade SLA, Leeper FJ, Hummel W, Müller M (2013) α-Hydroxy-β-keto acid rearrangement–decarboxylation: impact on ThDP-dependent enzymatic transformations. Org Biomol Chem 11:252–256. doi:10.1039/c2ob26981c
Betancor L, Fernandez MJ, Weissman KJ, Leadlay PF (2008) Improved catalytic activity of a purified multienzyme from a modular polyketide synthase after coexpression with Streptomyces chaperonins in Escherichia coli. ChemBioChem 9:2962–2966. doi:10.1002/cbic.200800475
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
Breslow R (1958) On the mechanism of thiamine action. IV. Evidence from studies on model systems. J Am Chem Soc 80:3719–3726. doi:10.1021/ja01547a064
Cerdeno AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8:817–829. doi:10.1016/S1074-5521(01)00054-0
Crout DHG, Hedgecock CJR (1979) The base-catalysed rearrangement of α-acetolactate (2-hydroxy-2-methyl-3-oxobutanoate): a novel carboxylate ion migration in a tertiary ketol rearrangement. J Chem Soc Perkin Trans 1:1982–1989. doi:10.1039/P19790001982
DiRocco D, Rovis T (2011) Catalytic asymmetric intermolecular Stetter reaction of enals with nitroalkenes: enhancement of catalytic efficiency through bifunctional additives. J Am Chem Soc 133:10402–10405. doi:10.1021/ja203810b
Dresen C (2008) α,β-ungesättigte Carbonyle als Substrate für asymmetrische C-C-Additionen mit Thiamindiphosphat (ThDP)-abhängigen Enzymen. Dissertation, Albert-Ludwigs-Universität Freiburg
Dresen C, Richter M, Pohl M, Lüdeke S, Müller M (2010) The enzymatic asymmetric conjugate umpolung reaction. Angew Chem Int Ed 49:6600–6603. doi:10.1002/anie.201000632
Dünnwald T, Demir AS, Siegert P, Pohl M, Müller M (2000) Enantioselective synthesis of (S)-2-hydroxy propanone derivatives by benzoylformate decarboxylase catalyzed C-C-bond formation. Eur J Org Chem 2161–2170
Enders D, Han J, Henseler A (2008) Asymmetric intermolecular Stetter reactions catalyzed by a novel triazolium derived N-heterocyclic carbene. Chem Commun 3989–3991. doi:10.1039/B809913H
Gocke D, Nguyen CL, Pohl M, Stillger T, Walter L, Müller M (2007) Branched-chain ketoacid decarboxylase from Lactococcus lactis (KdcA), a new thiamin diphosphate-dependent enzyme for asymmetric C-C bond formation. Adv Synth Catal 349:1425–1435. doi:10.1002/adsc.200700057
Hailes HC, Rother D, Müller M, Westphal R, Ward JM, Pleiss J, Vogel C, Pohl M (2013) Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J 280:6374–6394. doi:10.1111/febs.12496
Hawkins CF, Borges A, Perham RN (1989) A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 255:77–82. doi:10.1016/0014-5793(89)81064-6
Kawasaki T, Sakurai F, Nagatsuka S, Hayakawa Y (2009) Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis. J Antibiot 62:271–276. doi:10.1038/ja.2009.27
Kim D, Lee JS, Park YK, Kim JF, Jeong H, Oh TK, Kim BS, Lee CH (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102:937–944. doi:10.1111/j.1365-2672.2006.03172.x
Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK (2008) Red to red—the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18:1621–1629. doi:10.4014/jmb.2008.18.10.1621
Kwon S, Park Y, Kim JF (2010) Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl Environ Microbiol 76:1661–1668. doi:10.1128/AEM.01468-09
Lee JS, Kim Y, Park S, Kim J, Kang S, Lee M, Ryu S, Choi JM, Oh T, Yoon J (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl Environ Microbiol 77:4967–4973. doi:10.1128/AEM.01986-10
Lehwald P (2010) Biokatalytische Synthese tertiärer Alkohole mittels asymmetrischer Carboligationsreaktion unter Verwendung eines Thiamindiphosphat-abängigen Enzyms. Dissertation, Albert-Ludwigs-Universität Freiburg
Liu Q, Perreault S, Rovis T (2008) Catalytic asymmetric intermolecular Stetter reaction of glyoxamides with alkylidenemalonates. J Am Chem Soc 130:14066–14067. doi:10.1021/ja805680z
Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger KE, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2:22–33. doi:10.1021/sb3000657
Loschonsky S, Waltzer S, Brecht V, Müller M (2014) Elucidation of the enantioselective cyclohexane-1,2-dione hydrolase (CDH) catalyzed formation of (S)-acetoin. ChemCatChem 6:969–972. doi:10.1002/cctc.201300904
Müller M, Gocke D, Pohl M (2009) Exploitation of ThDP-dependent enzymes for asymmetric chemoenzymatic synthesis. FEBS J 276:2894–2904. doi:10.1111/j.1742-4658.2009.07017.x
Müller M, Sprenger GA, Pohl M (2013) C–C bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 17:261–270. doi:10.1016/j.cbpa.2013.02.017
Schloss PD, Allen HK, Klimowicz AK, Mlot C, Gross JA, Savengsuksa S, McEllin J, Clardy J, Ruess JW, Handelsman J (2010) Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol 29:533–541. doi:10.1089/dna.2010.1020
Seebach D (1979) Methods of reactivity umpolung. Angew Chem Int Ed Engl 18:239–258. doi:10.1002/anie.197902393
Stetter H (1976) Catalyzed addition of aldehydes to activated double bonds—a new synthetic approach. Angew Chem Int Ed Engl 15:639–647. doi:10.1002/anie.197606391
Stetter H, Schreckenberg M (1973) A new method for addition of aldehydes to activated double bonds. Angew Chem Int Ed Engl 12:81. doi:10.1002/anie.197300811
Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218. doi:10.1038/35025116
Wang Y, Yuan Y, Zhou L, Su Q, Fang X, Li T, Wang J, Chang D, Su L, Xu G, Guo Y, Yang R, Liu C (2012) Draft genome sequence of Serratia marcescens strain LCT-SM213. J Bacteriol 194:4477–4478. doi:10.1128/JB.00933-12
Williamson NR, Simonsen HT, Ahmed RAA, Goldet G, Slater H, Woodley L, Leeper FJ, Salmond GPC (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56:971–989. doi:10.1111/j.1365-2958.2005.04602.x
Xie B, Shu Y, Qin Q, Rong J, Zhang X, Chen X, Zhou B, Zhang Y (2012) Genome sequence of the cycloprodigiosin-producing bacterial strain Pseudoalteromonas rubra ATCC 29570T. J Bacteriol 194:1637–1638. doi:10.1128/JB.06822-11
Acknowledgments
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the scope of the Research Group FOR 1296. We are grateful to Prof. Peter Leadlay, University of Cambridge, and Dr. Wolfgang Hüttel, Albert-Ludwigs-Universität Freiburg, for providing plasmid pL1SL2 and for helpful discussions. The technical assistance of Fabrizio Bonina, Volker Brecht, Wolfgang Kornberger, and Simon Waltzer, Albert-Ludwigs-Universität Freiburg, is gratefully acknowledged. We thank Dr. Mostafa Zarei, Center for Biological Systems Analysis, Freiburg, for MS determinations.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 246 kb)
Rights and permissions
About this article
Cite this article
Kasparyan, E., Richter, M., Dresen, C. et al. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes. Appl Microbiol Biotechnol 98, 9681–9690 (2014). https://doi.org/10.1007/s00253-014-5850-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-5850-0
Keywords
- 1,4-Carboligation
- Biocatalysis
- C–C coupling
- Chemoenzymatic synthesis
- Umpolung