Skip to main content
Log in

Surface analysis reveals biogenic oxidation of sub-bituminous coal by Pseudomonas fluorescens

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Direct analysis of the colonised surface on coal using attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) revealed the nature of bacteria-mediated oxidation at the coal surface. Unique oxidation peaks generated by the presence of Pseudomonas fluorescens on coal was shown through ATR-FTIR measurements, and ATR-FTIR imaging illustrated that this peak was only observed within the region of coal colonised by bacteria. Contact angle measurements and surface free energy of adhesion calculations showed that the adhesion between P. fluorescens and coal was thermodynamically favourable, and scanning electron microscopy (SEM) exhibited individual cell or monolayer cluster attachment on coal. Furthermore, Gaussian peak fitting of peroxidase-treated coal ATR-FTIR spectra revealed that peroxidase or related enzymes produced by P. fluorescens may be responsible for coal oxidation. This study demonstrated the usefulness and practicality of ATR-FTIR for analysing coal oxidation by P. fluorescens and may well be applied to other microbe-driven modifications of coal for its rapidity and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ Int 26:413–416

  • Bublitz F, Gunther T, Fritsche W (1994) Screening of fungi for the biological modification of hard coal and coal derivatives. Fuel Process Technol 40:347–354

    Article  CAS  Google Scholar 

  • Colonna S, Gaggero N, Richelmi C, Pasta P (1999) Recent biotechnological development in the use of peroxidases. Trends Biotechnol 17:163–168

    Article  CAS  PubMed  Google Scholar 

  • Das T, Sharma PK, Busscher HJ, van der Mei HC, Krom BP (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76:3405–3408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

  • Di Gennaro P, Conforti P, Lasagni M, Bestetti G, Bernasconi S, Orsini F, Sello G (2006) Dioxygenation of naphthalene by Pseudomonas fluorescens N3 dioxygenase: optimisation of the process parameters. Biotechnol Bioeng 93:511–518

    Article  PubMed  Google Scholar 

  • Fakoussa RM (1988) Production of water-soluble coal substances by partial microbial liquefaction of untreated coal. Resour Conserv Recy 1:251–260

    Article  CAS  Google Scholar 

  • Foght JM, Westlake DWS (1996) Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens. Biodegradation 7:353–366

    Article  CAS  PubMed  Google Scholar 

  • Fratesi SE, Lynch FL, Kirkland BL, Brown LR (2004) Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the Carter Sandstone. J Sediment Res 74:858–867

    Article  Google Scholar 

  • Friedel RA, Queiser JA (1956) Infrared analysis of bituminous coals and other carbonaceous materials. Anal Chem 28:22–30

    Article  CAS  Google Scholar 

  • García-Junco M, De Olmedo E, José-Julio O (2001) Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environ Microbiol 3:561–569

    Article  PubMed  Google Scholar 

  • Guo YP, Hu YY, Gu RR, Lin H (2009) Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. J Colloid Interface Sci 331:356–363

  • Hazrin-Chong NH, Manefield M (2012) An alternative SEM drying method using hexamethyldisilizane (HMDS) for microbial cell attachment studies on sub-bituminous coal. J Microbiol Methods 90:96–99

    Article  CAS  PubMed  Google Scholar 

  • Hearn EM, Dennis JJ, Gray MR, Foght JM (2003) Identification and characterisation of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185:6233–6240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofrichter M, Fakoussa RM (2001) Microbial degradation and modification of coal. In: Hofrichter M, Steinbuchel A (eds) Biopolymers: Lignin, humic substances and coal. Wiley-CSH, Germany, pp 393–420

    Google Scholar 

  • Hofrichter M, Fritsche W (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. III. In vitro depolymerization of coal humic acids by a crude preparation of manganese peroxidase from the white-rot fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47:566–571

    Article  CAS  Google Scholar 

  • Igbinigie EE, Atkins S, van Breugel Y, van Dyke S, Davies-Coleman MT, Rose PD (2008) Fungal biodegradation of hard coal by a newly reported isolate Neosartoya fischeri. Biotechnol J 3:1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459

    Article  CAS  PubMed  Google Scholar 

  • Kamerbeek NM, Moonen MJH, van der Ven JGM, van Berkel WJH, Fraaije MW, Janssen DB (2001) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. Eur J Biochem 268:2547–2557

    Article  CAS  PubMed  Google Scholar 

  • Korber DR, Lawrence JR, Caldwell DE (1994) Effect of motility on surface colonisation and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems. Appl Environ Microbiol 60:1421–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krafft C (2009) Vibrational spectroscopic imaging of soft tissue. In: Salzer R, Siesler HW (eds) Infrared and Raman spectroscopic imaging. Wiley-VCH, Weinheim, pp 143–147

    Google Scholar 

  • Leahy JG, Byrne AM, Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidising bacteria. Appl Environ Microbiol 62:825–833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machnikowska H, Pawelec K, Podgórska A (2002) Microbial degradation of low rank coals. Fuel Process Technol 77–78:17–23

    Article  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  CAS  PubMed  Google Scholar 

  • Painter PC, Rhoads C (1981) Fourier transform infrared studies of coal oxidation. ACS Div Fuel Chem 26:35–38

    CAS  Google Scholar 

  • Penner TJ, Foght JM, Budwill K (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int J Coal Geol 82:81–93

    Article  CAS  Google Scholar 

  • Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quilès F, Humbert F, Delille A (2010) Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. Spectrochim Acta, Part A 75:610–616

    Article  Google Scholar 

  • Randazzo D, Berti D, Briganti F, Baglioni P, Scozzafava A, Di Gennaro P, Galli E, Bestetti G (2001) Efficient polycyclic aromatic hydrocarbons dihydroxylation in direct micellar systems. Biotechnol Bioeng 74:240–248

    Article  CAS  PubMed  Google Scholar 

  • Socrates G (2001) Infrared and Raman characteristic group frequencies—tables and charts, 3rd edn. J Wiley & Sons, Chichester

    Google Scholar 

  • Strąpoć D, Picardal FW, Turich C, Schaperdoth I, Macalady JL, Lipp JS, Lin Y, Ertefai TF, Schubotz F, Hinrichs K, Mastalerz M, Schimmelmann A (2008) Methane-producing microbial community in a coal bed of the Illinois Basin. Appl Environ Microbiol 74:2424–2432

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Kunz DA, Venables BJ (1996) Incorporation of molecular oxygen and water during enzymatic oxidation of cyanide by Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 62:2195–2197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams V, Fletcher M (1996) Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol 62:100–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wondrack L, Szanto M, Wood WA (1989) Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase. Appl Biochem Biotechnol 20–21:765–780

    Article  Google Scholar 

  • Zhang YM, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Tech 31:2211–2217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Research Council Linkage Project (LP100100128). Ms. Hazrin-Chong was funded by the Malaysian Ministry of Higher Education. The authors thank Jennifer Norman and the Electron Microscopy Unit, University of New South Wales, for providing microscopy facility, training and expert advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Manefield.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazrin-Chong, N.H., Marjo, C.E., Das, T. et al. Surface analysis reveals biogenic oxidation of sub-bituminous coal by Pseudomonas fluorescens . Appl Microbiol Biotechnol 98, 6443–6452 (2014). https://doi.org/10.1007/s00253-014-5832-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5832-2

Keywords

Navigation