Skip to main content

A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities

Abstract

Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abokitse K, Hummel W (2003) Cloning, sequence analysis and heterologous expression of the gene encoding a (s)-specific alcohol dehydrogenase from Rhodococcus erythropolis DSM 43297. Appl Microbiol Biotechnol 62:380–386

    PubMed  Article  CAS  Google Scholar 

  • Barbey C, Crépin A, Cirou A, Budin-Verneuil A, Orange N, Feuillolev M, Faure D, Dessaux Y, Burini JF, Latour X (2012) Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis. J Proteome Res 11:206–2016

    PubMed  Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Article  CAS  Google Scholar 

  • Bryant FO, Wiegel J, Ljungdahl LG (1988) Purification and properties of primary and secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus. Appl Environ Microbiol 54:460–465

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Review: diversity of structure and properties among catalases. Cell Mol Life Sci 61:192–208

    PubMed  Article  CAS  Google Scholar 

  • Da Carvalho CCCR, Da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726

    PubMed  Article  Google Scholar 

  • Eisenthal R, Cornish-Bowden (1974) The direct linear plot: a new graphical procedure for estimating enzyme kinetic parameter. Biochem J 193:715–720

    Google Scholar 

  • Fuhrmann H, Dobeleit G, Belleir S, Gück T (2002) Cholesterol oxidase and resistance of Rhodococcus equi to peroxidative stress in vitro in the presence of cholesterol. J Vet Med B 49:310–311

    Article  CAS  Google Scholar 

  • Gabriel O (1971) Analytical disc gel electrophoresis. In: Jakoby WB (ed) Methods in enzymology. Academic Press, New York

    Google Scholar 

  • Garbe LA, Morgenthal K, Kuscher K, Tressl R (2008) Metabolism of deuterated erythro-dihydroxy fatty acids in Saccharomyces cerevisiae. Enantioselective formation and characterization of hydroxylactones. Helv Chim Acta 91:993–1007

    Article  CAS  Google Scholar 

  • Haroune N, Combourieu B, Besse P, Sancelme M, Reemtsma T, Kloeper A, Biab A, Knapp JS, Baumberg S, Delort AM (2002) Benzothiazole degradation by Rhodococcus pyrodinovorans strain PA: evidence of a catechol 1,2-dioxygenase activity. Appl Environ Microbiol 68:6114–6120

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Hauck R, Adrian L, Wendler P, Amidjojo M, Hegemann W, Görisch H (2001) Transformation of 2,2′-dichlorodiisopropyl ether in mixed and pure culture. Appl Microbiol Biotechnol 56:491–495

    PubMed  Article  CAS  Google Scholar 

  • Hou CT, Patel R, Bernabe N, Marczak I (1981) Stereospecificity and other properties of a novel secondary-alcohol-specific alcohol dehydrogenase. E J Biochem 119:359–364

    Article  CAS  Google Scholar 

  • Hughes MA, Macfadden JM, Townsed CA (2005) New alpha-methylene-γ-butyrolactones with antimycobacterial properties. Bioorg Med Chem Lett 15:3857–3859

    PubMed  Article  CAS  Google Scholar 

  • Jeon YJ, Fong JCN, Riyanti EL, Neilan BA, Rogers PL, Svenson CJ (2007) Heterologous expression of the alcohol dehydrogenase (adhI) gene from Geobacillus thermoglucosidasius strain M10EXG. J Biotechnol 135:127–133

    Article  Google Scholar 

  • Kataoka M, Ishige T, Urano N, Nakamura Y, Sakuradani E, Fukui S, Kita S, Sakamoto K, Shimizu S (2008) Cloning and expression of the L-1amino-2-propanol dehydrogenase gene of Rhodococcus erythropolis, and its application to double chiral compound production. Appl Microbiol Biotechnol 80:597–604

    PubMed  Article  CAS  Google Scholar 

  • Koclar AG, Coruh N, Bolukbasi U, Ogel ZB (2012) Oxidation of phenolic compounds by the bifunctional catalase-phenol oxidase (CATPO) from Scytalidium thermophilum. Appl Microbiol Biotechnol 97:661–6672

    Article  Google Scholar 

  • Koo OK, Jeong DW, Lee JM, Kim JM, Lee JH, Chang HC, Hwan JK, Lee HJ (2005) Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol Lett 27:505–510

    PubMed  Article  CAS  Google Scholar 

  • Kreit J, Elalamib A (2002) Substrate characterization of a NAD-dependent secondary alcohol dehydrogenase from Rhodococcus sp. GK1 (CIP 105335). J Mol Catal B: Enzym 19:253–259

    Article  Google Scholar 

  • Kujo C, Ohshima T (1998) Enzymological characteristics of the hyperthermostable NAD-dependent glutamate dehydrogenase form the Archaeon Pyrobacterium islandicum and effects of denaturants and organic solvents. Appl Environ Microbiol 64:2152–2157

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kulys J, Kriauciunas K, Vidziunaite R (2003) Biphasic character of fungal catalases inhibition with hydroxylamine in presence of hydrogen peroxide. J Mol Catal B: Enzym 26:79–85

    Article  CAS  Google Scholar 

  • Ludwig B, Akundi A, Kendall K (1995) A long-chain secondary alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277. Appl Environ Microbiol 61:3729–3733

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moreno-Horn M, Garbe LA, Tressl R, Görisch H (2005) Transient accumulation of γ-butyrolactone during degradation of bis(4-chloro-n-butyl) ether by diethylether grown Rhodococcus sp. strain DTB. Appl Microbiol Biotechnol 69:335–340

    PubMed  Article  CAS  Google Scholar 

  • Moreno-Horn M, Martinez-Rojas E, Görisch H, Tressl R, Garbe LA (2007) Oxidation of 1,4-alkanediols into γ-lactones via γ-lactols using Rhodococcus erythropolis as biocatalyst. J Mol Catal B: Enzym 49:24–27

    Article  CAS  Google Scholar 

  • Romano D, Contente M, Granato T, Remmelli W, Zambelli P, Molinari F (2013) Biocatalytic oxidation of 1,4-diols and γ-lactols into γ-lactones: application to chemoenzymatic synthesis of drospirenone. Monatsh Chem 144:735–737

    Article  CAS  Google Scholar 

  • Schenkels P, Duine JA (2000) Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146:4775–4785

    Google Scholar 

  • Shimizu S, Kobayashi H, Masai E, Fukuda M (2001) Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol 67:2021–2028

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Si D, Urano N, Nozaki S, Honda K, Shimizu S, Kataoka M (2012) L-pantoyl lactone dehydrogenase from Rhodococcus erythropolis: genetic analyses and application to the stereospecific oxidation of L-pantoyl lactone. Appl Microbiol Biotechnol 95:431–440

    PubMed  Article  CAS  Google Scholar 

  • Solyanikova IP, Moiseeva OV, Boeren S, Boersma MG, Kolomytseva MP, Vervoot J, Rietjens ICM, Golovleva LA, van Berkel JH (2003) Conversion of 2-fluoromuconate to cis-dienelactone by purified enzyme of Rhodococcus opacus 1cp. Appl Environ Microbiol 69:5636–5642

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Takarada H, Sekine M, Hosoyama A, Yamada R, Fujisawa T, Omata S, Shimizu A, Tsukatani N, Tanikawa S, Fujita N, Harayama S (2009) Comparison of the complete genome sequences of Rhodococcus erythropolis PR4 and Rhodococcus opacus B4. EMBL/GenBank/DDBJ databases. Accessed Mar 2009

  • Tamura H, Appel M, Richling E, Schreier P (2006) Gamma-butyrolactones: streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 3:287–294

    Google Scholar 

  • Vera-Cabrera L, Johnson WM, Welsh O, Resendiz-Uresti FL, Salinas-Carmona MC (1999) Distribution in members of the genera Nocardia, Gordona, and Rhodoccus. J Clin Microbiol 3:1971–1976

    Google Scholar 

  • Zhang T, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif-Alexander Garbe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinez-Rojas, E., Kurt, T., Schmidt, U. et al. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities. Appl Microbiol Biotechnol 98, 9249–9258 (2014). https://doi.org/10.1007/s00253-014-5808-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5808-2

Keywords

  • Secondary alcohol dehydrogenase
  • Catalase
  • R. erythropolis
  • γ-Lactols
  • γ-Lactones