Skip to main content

Advertisement

Log in

Post-production modification of industrial enzymes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Industry has an increasing interest in the use of enzymes as environmentally friendly, highly efficient, and specific bio-catalysts. Enzymes have primarily evolved to function in aqueous environments at ambient temperature and pressure. These conditions however do not always correspond with industrial processes or applications, and only a small portion of all known enzymes are therefore suitable for industrial use. Protein engineering can sometimes be applied to convey more desirable properties to enzymes, such as increased stability, but is limited to the 20 naturally occurring amino acids or homologs thereof. Using post-production modification, which has the potential to combine desirable properties from the enzyme and the conjugated compounds, enzymes can be modified with both natural and synthetic molecules. This offers access to a myriad of possibilities for tuning the properties of enzymes. At this moment, however, the effects of post-production modification cannot yet be reliably predicted. The increasing number of applications will improve this so that the potential of this technology can be fully exploited. This review will focus on post-production modification of enzymes and its use and opportunities in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abello N, Geurink PP, Van Der Toorn M, Van Oosterhout AJM, Lugtenburg J, Van Der Marel GA, Kerstjens HAM, Postma DS, Overkleeft HS, Bischoff R (2008) Poly(ethylene glycol)-based stable isotope labeling reagents for the quantitative analysis of low molecular weight metabolites by LC-MS. Anal Chem 80:9171–9180

    CAS  PubMed  Google Scholar 

  • Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977a) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586

    CAS  PubMed  Google Scholar 

  • Abuchowski A, Van Es T, Palczuk NC, Davis FF (1977b) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581

    CAS  PubMed  Google Scholar 

  • Adamczak M, Krishna SH (2004) Strategies for improving enzymes for efficient biocatalysis. Food Technol Biotechnol 42:251–264

    CAS  Google Scholar 

  • Ahern TJ, Casal JI, Petsko GA, Klibanov AM (1987) Control of oligomeric enzyme thermostability by protein engineering. Proc Natl Acad Sci U S A 84:675–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antos JM, Miller GM, Grotenbreg GM, Ploegh HL (2008) Lipid modification of proteins through sortase-catalyzed transpeptidation. J Am Chem Soc 130:16338–16343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antos JM, Popp MW, Ernst R, Chew G, Spooner E, Ploegh HL (2009) A straight path to circular proteins. J Biol Chem 284:16028–16036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta Gen Subj 1473:4–8

    CAS  Google Scholar 

  • Arif M, Senapati P, Shandilya J, Kundu TK (2010) Protein lysine acetylation in cellular function and its role in cancer manifestation. Biochim Biophys Acta Gen Regul Mech 1799:702–716

    CAS  Google Scholar 

  • Barbarić S, Mrša V, Ries B, Mildner P (1984) Role of the carbohydrate part of yeast acid phosphatase. Arch Biochem Biophys 234:567–575

    PubMed  Google Scholar 

  • Baslé E, Joubert N, Pucheault M (2010) Protein chemical modification on endogenous amino acids. Chem Biol 17:213–227

    PubMed  Google Scholar 

  • Basri M, Ampon K, Yunus WMZW, Razak CNA, Salleh AB (1995) Synthesis of fatty esters by polyethylene glycol-modified lipase. J Chem Technol Biotechnol 64:10–16

    CAS  Google Scholar 

  • Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, Zhao H, Peng P, Wu D, Zhang Z, Hua J, Hsieh M, Zhou J, Petti G, Li X, Janjua A, Mendez M, Liu J, Longley C, Zhang Z, Mehlig M, Borowski V, Viswanathan M, Filpula D (2006) Structure-function engineering of interferon-ß-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 17:618–630

    CAS  PubMed  Google Scholar 

  • Bernardes GJL, Chalker JM, Errey JC, Davis BG (2008) Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J Am Chem Soc 130:5052–5053

    CAS  PubMed  Google Scholar 

  • Besson C, Favre-Bonvin G, O’Fagain C, Wallach J (1995) Chemical derivatives of Pseudomonas aeruginosa elastase showing increased stability. Enzyme Microb Technol 17:877–881

    CAS  Google Scholar 

  • Bianchi D, Battistel E, Bosetti A, Cesit P, Fekete Z (1993) Effects of chemical modification on stereoselectivity of Pseudomonas cepacia lipase. Tetrahedron Asymmetr 4:777–782

    CAS  Google Scholar 

  • Boros S, Åhrman E, Wunderink L, Kamps B, De Jong WW, Boelens WC, Emmanuelsson CS (2006) Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase. Proteins 62:1044–1052

    CAS  PubMed  Google Scholar 

  • Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55:1261–1277

    CAS  PubMed  Google Scholar 

  • Canalle LA, Löwik DWPM, Van Hest JCM (2010) Polypeptide-polymer bioconjugates. Chem Soc Rev 39:329–353

    CAS  PubMed  Google Scholar 

  • Chen HM, Ford C, Reilly PJ (1994) Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochem J 301:275–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constantinou A, Epenetos AA, Hreczuk-Hirst D, Jain S, Deonarain MP (2008) Modulation of antibody pharmacokinetics by chemical polysialylation. Bioconjug Chem 19:643–650

    CAS  PubMed  Google Scholar 

  • Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342

    CAS  PubMed  Google Scholar 

  • Dasgupta S, Samantaray S, Sahal D, Roy RP (2011) Isopeptide ligation catalyzed by quintessential sortase A: mechanistic cues from cyclic and branched oligomers of indolicidin. J Biol Chem 286:23996–24006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis BG (2003) Chemical modification of biocatalysts. Curr Opin Biotechnol 14:379–386

    CAS  PubMed  Google Scholar 

  • De La Casa RM, Guisán JM, Sánchez-Montero JM, Sinisterra JV (2002) Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme Microb Technol 30:30–40

    Google Scholar 

  • DeLuna A, Quezada H, Gómez-Puyou A, González A (2005) Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae. Biochem Biophys Res Commun 328:1083–1090

    CAS  PubMed  Google Scholar 

  • DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    CAS  PubMed  Google Scholar 

  • Dixon HBF (1984) N-terminal modification of proteins—a review. J Protein Chem 3:99–108

    CAS  Google Scholar 

  • Dust JM, Fang ZH, Harris JM (1990) Proton NMR characterization of poly(ethylene glycols) and derivatives. Macromolecules 23:3742–3746

    CAS  Google Scholar 

  • Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    CAS  PubMed  Google Scholar 

  • Fernandes AI, Gregoriadis G (1997) Polysialylated asparaginase: preparation, activity and pharmacokinetics. Biochim Biophys Acta Protein Struct Mol 1341:26–34

    CAS  Google Scholar 

  • Fernandes AI, Gregoriadis G (2001) The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics. Int J Pharm 217:215–224

    CAS  PubMed  Google Scholar 

  • Fernández M, Fragoso A, Cao R, Baños M, Villalonga R (2002) Chemical conjugation of trypsin with monoamine derivatives of cyclodextrins: catalytic and stability properties. Enzyme Microb Technol 31:543–548

    Google Scholar 

  • Fernández M, Fragoso A, Cao R, Villalonga R (2005) Stabilization of α-chymotrypsin by chemical modification with monoamine cyclodextrin. Process Biochem 40:2091–2094

    Google Scholar 

  • Fleckenstein B, Molberg Ø, Qiao S, Schmid DG, Von Mülbe FD, Elgstøen K, Jung G, Sollid LM (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation reactions. J Biol Chem 277:34109–34116

    CAS  PubMed  Google Scholar 

  • Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28

    CAS  PubMed  Google Scholar 

  • Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM (2013) Immobilised enzymes in biorenewables production. Chem Soc Rev 42:6491–6533

    CAS  PubMed  Google Scholar 

  • Fukal L, Marek M, Kás J (1983) Proteolytic activity and immunoreactivity of chemically modified Papain. Z Lebensm Unters Forsch 176:430–433

    CAS  PubMed  Google Scholar 

  • Gaertner HF, Puigserver AJ (1992) Increased activity and stability of poly(ethylene glycol)-modified trypsin. Enzyme Microb Technol 14:150–155

    CAS  PubMed  Google Scholar 

  • Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P (2012) Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Del 9:1319–1323

    CAS  Google Scholar 

  • Garcia D, Ortéga F, Marty J (1998) Kinetics of thermal inactivation of horseradish peroxidase: stabilizing effect of methoxypoly(ethylene glycol). Biotechnol Appl Biochem 27:49–54

    CAS  Google Scholar 

  • Gaudriault G, Vincent J (1992) Selective labeling of α- or ε-amino groups in peptides by the Bolton-Hunter reagent. Peptides 13:1187–1192

    CAS  PubMed  Google Scholar 

  • Gioacchini AM, Carrea G, Secundo F, Baraldini M, Roda A (1997) Electrospray mass spectrometric analysis of poly(ethylene glycol)-protein conjugates. Rapid Commun Mass Spectrom 11:1219–1222

    CAS  Google Scholar 

  • Gonera A, Mischnick P, Ukeda H (2004) The application of O-aminopropyl amylose for the stabilization of horseradish peroxidase via addition and cross-linking. Enzyme Microb Technol 34:248–254

    CAS  Google Scholar 

  • González M, Vaillard SE (2013) Evolution of reactive mPEG polymers for the conjugation of peptides and proteins. Curr Org Chem 17:975–998

    Google Scholar 

  • Grant WD, Danson MJ, Scott DJ, Halling PJ, Engberts JBFN, Ho MW, Berendsen HJC (2004) Life at low water activity. Phil Trans R Soc B 359:1249–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gregoriadis G, McCormack B, Wang Z, Lifely R (1993) Polysialic acids: potential in drug delivery. FEBS Lett 315:271–276

    CAS  PubMed  Google Scholar 

  • Gregoriadis G, Jain S, Papaioannou I, Laing P (2005) Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm 300:125–130

    CAS  PubMed  Google Scholar 

  • Hackenberger CPR, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed 47:10030–10074

    CAS  Google Scholar 

  • Hamada JS (1994) Deamidation of food proteins to improve functionality. Crit Rev Food Sci Nutr 34:283–292

    CAS  PubMed  Google Scholar 

  • Han M, Wang X, Ding H, Jin M, Yu L, Wang J, Yu X (2014) The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb Technol 54:32–37

    CAS  PubMed  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    CAS  PubMed  Google Scholar 

  • Harris JM, Kozlowski A (1997) Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications. US 08/642,231

  • Hassani L (2012a) Chemical modification of Horseradish peroxidase with carboxylic anhydrides: effect of negative charge and hydrophilicity of the modifiers on thermal stability. J Mol Catal B 80:15–19

    CAS  Google Scholar 

  • Hassani L (2012b) The Effect of chemical modification with pyromellitic anhydride on structure, function, and thermal stability of horseradish peroxidase. Appl Biochem Biotechnol 167:489–497

    CAS  PubMed  Google Scholar 

  • Hassani L, Ranjbar B, Khajeh K, Naderi-Manesh H, Naderi-Manesh M, Sadeghi M (2006) Horseradish peroxidase thermostabilization: the combinatorial effects of the surface modification and the polyols. Enzyme Microb Technol 38:118–125

    CAS  Google Scholar 

  • He Z, Zhang Z, He M (2000) Kinetic study of thermal inactivation for native and methoxypolyethylene glycol modified trypsin. Process Biochem 35:1235–1240

    CAS  Google Scholar 

  • Heck T, Faccio G, Richter M, Thöny-Meyer L (2013) Enzyme-catalyzed protein crosslinking. Appl Microbiol Biotechnol 97:461–475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heiss L (1995) Polyethylene glycol monomethyl ether-modified pig liver esterase: preparation, characterization and catalysis of enantioselective hydrolysis in water and acylation in organic solvents. Tetrahedron Lett 36:3833–3836

    CAS  Google Scholar 

  • Hernáiz MJ, Sánchez-Montero JM, Sinisterra JV (1999) Modification of purified lipases from Candida rugosa with polyethylene glycol: a systematic study. Enzyme Microb Technol 24:181–190

    Google Scholar 

  • Hernández K, Fernández L, Gómez L, Villalonga R (2006) Glycosidation of trypsin with end-group activated dextran. Process Biochem 41:1155–1159

    Google Scholar 

  • Hinds K, Koh JJ, Joss L, Liu F, Baudyš M, Kim SW (2000) Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjug Chem 11:195–201

    CAS  PubMed  Google Scholar 

  • Hu J, Sebald W (2011) N-terminal specificity of PEGylation of human bone morphogenetic protein-2 at acidic pH. Int J Pharm 413:140–146

    CAS  PubMed  Google Scholar 

  • Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochem 43:1019–1032

    CAS  Google Scholar 

  • Jain S, Hreczuk-Hirst DH, McCormack B, Mital M, Epenetos A, Laing P, Gregoriadis G (2003) Polysialylated insulin: synthesis, characterization and biological activity in vivo. Biochim Biophys Acta Gen Subj 1622:42–49

    CAS  Google Scholar 

  • Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1:1–13

    Google Scholar 

  • Kajiuchi T, Park J (1992) Characteristics of cellulase modified with a copolymer of polyethylene glycol derivative and maleic acid anhydride. J Chem Eng Jpn 25:202–206

    CAS  Google Scholar 

  • Kazan D, Erarslan A (1997) Stabilization of Escherichia coli penicillin G acylase by polyethylene glycols against thermal inactivation. Appl Biochem Biotechnol 62:1–13

    CAS  PubMed  Google Scholar 

  • Khajeh K, Naderi-Manesh H, Ranjbar B, Moosavi-Movahedi AA, Nemat-Gorgani M (2001) Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and stability. Enzyme Microb Technol 28:543–549

    CAS  PubMed  Google Scholar 

  • Khan SA, Halling PJ, Bosley JA, Clark AH, Peilow AD, Pelan EG, Rowlands DW (1992) Polyethylene glycol-modified subtilisin forms microparticulate suspensions in organic solvents. Enzyme Microb Technol 14:96–100

    CAS  Google Scholar 

  • Khaparde SS, Singhal RS (2001) Chemically modified papain for applications in detergent formulations. Bioresour Technol 78:1–4

    CAS  PubMed  Google Scholar 

  • Kinstler O, Molineux G, Treuheit M, Ladd D, Gegg C (2002) Mono-N-terminal poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev 54:477–485

    CAS  PubMed  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    CAS  PubMed  Google Scholar 

  • Kling J (2013) Pegylation of biologics. Bioprocess Int 11:34–43

    Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308

    CAS  Google Scholar 

  • Koide N, Muramatsu T (1974) Endo ß N acetylglucosaminidase acting on carbohydrate moieties of glycoproteins. Purification and properties of the enzyme from Diplococcus pneumoniae. J Biol Chem 249:4897–4904

  • Koops BC, Verheij HM, Slotboom AJ, Egmond MR (1999) Effect of chemical modification on the activity of lipases in organic solvents. Enzyme Microb Technol 25:622–631

    CAS  Google Scholar 

  • Kotormán M, Cseri A, Laczkó I, Simon LM (2009) Stabilization of α-chymotrypsin in aqueous organic solvents by chemical modification with organic acid anhydrides. J Mol Catal B 59:153–157

    Google Scholar 

  • Kozlowski A, Milton Harris J (2001) Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C. J Control Release 72:217–224

    CAS  PubMed  Google Scholar 

  • Kwon I, Lim SI (2013) Non-natural amino acids for protein engineering and new protein chemistries. Macromol Chem Phys 214:1295–1301

    CAS  Google Scholar 

  • Kwon OH, Imanishi Y, Ito Y (1999) Catalytic activity and conformation of chemically modified subtilisin Carlsberg in organic media. Biotechnol Bioeng 66:265–270

    CAS  PubMed  Google Scholar 

  • Lee K, Gesundheit N, Chen H, Weintraub BD (1986) Enzymatic deglycosylation of thyroid-stimulating hormone with peptide N-glycosidase F and endo-ß-N-acetylglucosaminidase F. Biochem Biophys Res Commun 138:230–237

    CAS  PubMed  Google Scholar 

  • Lewinska M, Seitz C, Skerra A, Schmidtchen FP (2004) A novel method for the N-terminal modification of native proteins. Bioconjug Chem 15:231–234

    CAS  PubMed  Google Scholar 

  • Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249

    CAS  PubMed  Google Scholar 

  • Liu J, Wang M (2007) Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol 7:23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Song H, Weng L, Ji L (2002) Increased thermostability and phenol removal efficiency by chemical modified horseradish peroxidase. J Mol Catal B 18:225–232

    CAS  Google Scholar 

  • Longo MA, Combes D (1995) A novel chemoenzymatic glycosylation strategy: application to lysozyme modification. FEBS Lett 375:63–66

    CAS  PubMed  Google Scholar 

  • Longo MA, Combes D (1997) Influence of surface hydrophilic/hydrophobic balance on enzyme properties. J Biotechnol 58:21–32

    CAS  PubMed  Google Scholar 

  • López-Cruz JI, Viniegra-González G, Hernández-Arana A (2006) Thermostability of native and pegylated Myceliophthora thermophila laccase in aqueous and mixed solvents. Bioconjug Chem 17:1093–1098

    PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    CAS  PubMed  Google Scholar 

  • Mabrouk PA (1997) The use of poly(ethylene glycol)-enzymes in nonaqueous enzymology. In: Harris JM, Zalipky S (eds) Poly(ethylene glycol) chemistry and biological applications. ACS, Washington, DC, pp 118–133

    Google Scholar 

  • Mader D, Liebeke M, Winstel V, Methling K, Leibig M, Götz F, Lalk M, Peschel A (2013) Role of N-terminal protein formylation in central metabolic processes in Staphylococcus aureus. BMC Microbiol 13:1–9

    Google Scholar 

  • Masárová J, Mislovicová D, Gemeiner P, Michalková E (2001) Stability enhancement of Escherichia coli penicillin G acylase by glycosylation with yeast mannan. Biotechnol Appl Biochem 34:127–133

    PubMed  Google Scholar 

  • Matos M, Simpson BK, Ramírez HL, Cao R, Torres-Labandeira JJ, Hernández K (2012) Stabilization of glucose oxidase with cyclodextrin-branched carboxymethylcellulose. Biotecnol Apl 29:29–34

    Google Scholar 

  • Matsushima A, Nishimura H, Ashihara Y, Yokota Y, Inada Y (1980) Modification of E.coli asparaginase with 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-S-triazine(activated PEG2); Disappearance of binding ability towards anti-serum and retention of enzymic activity. Chem Lett 9:773–776

    Google Scholar 

  • Matsushima A, Okada M, Inada Y (1984) Chymotrypsin modified with polyethylene glycol catalyzes peptide synthesis reaction in benzene. FEBS Lett 178:275–277

    CAS  PubMed  Google Scholar 

  • Maximilian WP, John MA, Gijsbert MG, Spooner E, Hidde LP (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708

    Google Scholar 

  • McFarland JM, Joshi NS, Francis MB (2008) Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. J Am Chem Soc 130:7639–7644

    CAS  PubMed  Google Scholar 

  • Messner P (2004) Prokaryotic glycoproteins: unexplored but important. J Bacteriol 186:2517–2519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miland E, Smyth MR, Fágáin CÓ (1996) Increased thermal and solvent tolerance of acetylated horseradish peroxidase. Enzyme Microb Technol 19:63–67

    CAS  Google Scholar 

  • Milton Harris J, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    PubMed  Google Scholar 

  • Mislovicová D, Masárová J, Bucko M, Gemeiner P (2006) Stability of penicillin G acylase modified with various polysaccharides. Enzyme Microb Technol 39:579–585

    Google Scholar 

  • Miwa N, Yokoyama K, Wakabayashi H, Nio N (2010) Effect of deamidation by protein-glutaminase on physicochemical and functional properties of skim milk. Int Dairy J 20:393–399

    CAS  Google Scholar 

  • Miyazawa T, Ensatsu E, Hiramatsu M, Yanagihara R, Yamada T (2002) α-chymotrypsin-catalysed segment condensations via the kinetically controlled approach using carbamoylmethyl esters as acyl donors in organic media. J Chem Soc Perkin Trans 1 396–401

  • Moniruzzaman M, Kamiya N, Goto M (2010) Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem 8:2887–2899

    CAS  PubMed  Google Scholar 

  • Moskvichyov BV, Komarov EV, Ivanova GP (1986) Study of trypsin thermodenaturation process. Enzyme Microb Technol 8:498–502

    CAS  Google Scholar 

  • Nordwald EM, Kaar JL (2013) Stabilization of enzymes in ionic liquids via modification of enzyme charge. Biotechnol Bioeng 110:2352–2360

    CAS  PubMed  Google Scholar 

  • Novelli G, D’Apice M (2012) Protein farnesylation and disease. J Inherit Metab Dis 35:917–926

    CAS  PubMed  Google Scholar 

  • Park JW, Kajiuchi T (1995) Development of effective modified cellulase for cellulose hydrolysis process. Biotechnol Bioeng 45:366–373

    CAS  PubMed  Google Scholar 

  • Park J, Park K (2001) Improvement of the physical properties of reprocessed paper by using biological treatment with modified cellulase. Bioresour Technol 79:91–94

    CAS  PubMed  Google Scholar 

  • Park J, Park K, Song H, Shin H (2002) Saccharification and adsorption characteristics of modified cellulases with hydrophilic/hydrophobic copolymers. J Biotechnol 93:203–208

    CAS  PubMed  Google Scholar 

  • Pasut G, Veronese FM (2009) Pegylation for improving the effectiveness of therapeutic biomolecules. Drugs Today 45:687–695

    CAS  PubMed  Google Scholar 

  • Pasut G, Veronese FM (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 161:461–472

    CAS  PubMed  Google Scholar 

  • Perutz MF (1978) Electrostatic effects in proteins. Science 201:1187–1191

    CAS  PubMed  Google Scholar 

  • Piesecki S, Alhadeff JA (1992) The effect of carbohydrate removal on the properties of human liver α-l-fucosidase. Biochim Biophys Acta Protein Struct Mol 1119:194–200

    CAS  Google Scholar 

  • Pina C, Clark D, Blanch H (1989) The activity of PEG-modified chymotrypsin in aqueous and organic media. Biotechnol Tech 3:333–338

    CAS  Google Scholar 

  • Poh S, Abdul Majid F (2011) Thermal stability of free bromelain and bromelain-polyphenol complex in pineapple juice. Int Food Res J 18:1051–1060

    CAS  Google Scholar 

  • Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11:220–225

    CAS  PubMed  Google Scholar 

  • Popp MW, Dougan SK, Chuang T, Spooner E, Ploegh HL (2011) Sortase-catalyzed transformations that improve the properties of cytokines. Proc Natl Acad Sci U S A 108:3169–3174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proft T (2010) Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation. Biotechnol Lett 32:1–10

    CAS  PubMed  Google Scholar 

  • Qian G, Ma J, Zhou J, He B (1997) Chemical modification of E. coli L-asparaginase with poly(N-vinylpyrrolidone-co-maleic anhydride). React Funct Polym 32:117–121

    CAS  Google Scholar 

  • Quintanilla-Guerrero F, Duarte-Vázquez MA, Tinoco R, Gómez-Suárez M, García-Almendárez BE, Vazquez-Duhalt R, Regalado C (2008) Chemical modification of turnip peroxidase with methoxypolyethylene glycol enhances activity and stability for phenol removal using the immobilized enzyme. J Agric Food Chem 56:8058–8065

    CAS  PubMed  Google Scholar 

  • Rajalakshmi N, Sundaram PVS (1995) Stability of native and covalently modified papain. Protein Eng 8:1039–1047

    CAS  PubMed  Google Scholar 

  • Rashidian M, Song JM, Pricer RE, Distefano MD (2012) Chemoenzymatic reversible immobilization and labeling of proteins without prior purification. J Am Chem Soc 134:8455–8467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Recktenwald A, Schomburg D, Schmid RD (1993) Protein engineering and design method and the industrial relevance. J Biotechnol 28:1–23

    CAS  PubMed  Google Scholar 

  • Ritter DW, Roberts JR, McShane MJ (2013) Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity. Enzyme Microb Technol 52:279–285

    CAS  PubMed  Google Scholar 

  • Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    CAS  PubMed  Google Scholar 

  • Rolland-Fulcrand V, May N, Viallefont P, Lazaro R (1994) Enzymatic peptide synthesis by new supported biocatalysts. Amino Acids 6:311–314

    CAS  PubMed  Google Scholar 

  • Romanini DW, Francis MB (2008) Attachment of peptide building blocks to proteins through tyrosine bioconjugation. Bioconjug Chem 19:153–157

    CAS  PubMed  Google Scholar 

  • Ryan O, Smyth MR, Fágáin CÓ (1994) Thermostabilized chemical derivatives of horseradish peroxidase. Enzyme Microb Technol 16:501–505

    CAS  PubMed  Google Scholar 

  • Samantaray S, Marathe U, Dasgupta S, Nandicoori VK, Roy RP (2008) Peptide-sugar ligation catalyzed by transpeptidase sortase:a facile approach to neoglycoconjugate synthesis. J Am Chem Soc 130:2132–2133

    CAS  PubMed  Google Scholar 

  • Sangeetha K, Abraham TE (2006) Chemical modification of papain for use in alkaline medium. J Mol Catal B 38:171–177

    CAS  Google Scholar 

  • Sartore L, Caliceti P, Schiavon O, Monfardini C, Veronese FM (1991) Accurate evaluation method of the polymer content in Monomethoxy(polyethylene glycol) modified proteins based on Amino acid analysis. Appl Biochem Biotechnol 31:213–222

    CAS  PubMed  Google Scholar 

  • Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54:487–504

    CAS  PubMed  Google Scholar 

  • Schellekens H, Hennink WE, Brinks V (2013) The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res 30:1729–1734

    CAS  PubMed  Google Scholar 

  • Schoffelen S, Lambermon MHL, Van Eldijk MB, Van Hest JCM (2008) Site-specific modification of Candida antarctica lipase B via residue-specific incorporation of a non-canonical amino acid. Bioconjug Chem 19:1127–1131

    CAS  PubMed  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    CAS  PubMed  Google Scholar 

  • Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105:8256–8261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin-Ya Y, Aye HN, Hong K, Kajiuchi T (2005) Efficacy of amphiphile-modified laccase in enzymatic oxidation and removal of phenolics in aqueous solution. Enzyme Microb Technol 36:147–152

    CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2005) Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles 9:471–476

  • Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998

    CAS  Google Scholar 

  • Song H, Yao J, Liu J, Zhou S, Xiong Y, Ji L (2005) Effects of phthalic anhydride modification on horseradish peroxidase stability and structure. Enzyme Microb Technol 36:605–611

    CAS  Google Scholar 

  • Spirig T, Weiner EM, Clubb RT (2011) Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82:1044–1059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    CAS  PubMed  Google Scholar 

  • Srimathi S, Jayaraman G (2005) Effect of glycosylation on the catalytic and conformational stability of homologous α-amylases. Protein J 24:79–88

    CAS  PubMed  Google Scholar 

  • Sundaram PV, Venkatesh R (1998) Retardation of thermal and urea induced inactivation of α-chymotrypsin by modification with carbohydrate polymers. Protein Eng 11:699–705

    CAS  PubMed  Google Scholar 

  • Szabó A, Kotormán M, Laczkó I, Simon LM (2009) Improved stability and catalytic activity of chemically modified papain in aqueous organic solvents. Process Biochem 44:199–204

    Google Scholar 

  • Takahashi K, Nishimura H, Yoshimoto T, Saito Y, Inada Y (1984) A chemical modification to make horseradish peroxidase soluble and active in benzene. Biochem Biophys Res Commun 121:261–265

    CAS  PubMed  Google Scholar 

  • Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using π-allylpalladium complexes. J Am Chem Soc 128:1080–1081

    CAS  PubMed  Google Scholar 

  • Tomazic SJ, Klibanov AM (1988) Mechanisms of irreversible thermal inactivation of Bacillus α-amylases. J Biol Chem 263:3086–3091

    CAS  PubMed  Google Scholar 

  • Ugarova NN, Rozhkova GD, Berezin IV (1979) Chemical modification of the ε-amino groups of lysine residues in horseradish peroxidase and its effect on the catalytic properties and thermostability of the enzyme. Biochim Biophys Acta Enzymol 570:31–42

    CAS  Google Scholar 

  • Van den Berg M, Schooneveld M, Vlasie M, Roos A, Smith D (2012) Fungal genes and their respective enzymes in industrial food, bio-based and pharma applications. In: Gupta VK, Ayyachamy M (eds) Biotechnology of fungal genes. Science, New Hampshire, pp 189–221

    Google Scholar 

  • Van Deventer JA, Fisk JD, Tirrell DA (2011) Homoisoleucine: a translationally active leucine surrogate of expanded hydrophobic surface area. ChemBioChem 12:700–702

    PubMed Central  PubMed  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    CAS  PubMed  Google Scholar 

  • Venkatesh R, Srimathi S, Yamuna A, Jayaraman G (2005) Enhanced catalytic and conformational stability of Atlantic cod trypsin upon neoglycosylation. Biochim Biophys Acta Gen Subj 1722:113–115

    CAS  Google Scholar 

  • Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417

    CAS  PubMed  Google Scholar 

  • Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22:315–329

    CAS  PubMed  Google Scholar 

  • Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458

    CAS  PubMed  Google Scholar 

  • Veronese FM, Largajolli R, Boccu E (1985) Surface modifications of proteins. Activation of monomethoxy-polyethylene glycols by phenylchloroformates and modification of ribonuclease and superoxide dismutase. Appl Biochem Biotechnol 11:141–152

    CAS  PubMed  Google Scholar 

  • Villalonga R, Gómez L, Ramírez HL, Villalonga ML (1999) Stabilization of α-amylase by chemical modification with carboxymethylcellulose. J Chem Technol Biotechnol 74:635–638

    CAS  Google Scholar 

  • Villalonga R, Villalonga ML, Gómez L (2000) Preparation and functional properties of trypsin modified by carboxymethylcellulose. J Mol Catal B Enzym 10:483–490

    CAS  Google Scholar 

  • Villalonga R, Fernández M, Fragoso A, Cao R, Mariniello L, Porta R (2003) Thermal stabilization of trypsin by enzymic modification with β-cyclodextrin derivatives. Biotechnol Appl Biochem 38:53–59

    CAS  PubMed  Google Scholar 

  • Witus LS, Netirojjanakul C, Palla KS, Muehl EM, Weng C, Iavarone AT, Francis MB (2013) Site-specific protein transamination using N-methylpyridinium-4- carboxaldehyde. J Am Chem Soc 135:17223–17229

    CAS  PubMed  Google Scholar 

  • Wright PC (2013) Improving biopharmaceutical production in microbial systems: Engineering GlycoPEGylation in E.coli. BBSRC Sustainable Bioenergy Centre BB/K011200/1

  • Wu Z, Guo Z (2012) Sortase-mediated transpeptidation for site-specific modification of peptides, glycopeptides, and proteins. J Carbohydr Chem 31:48–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu JR, Lin Y, Zheng ZY, Lin CC, Zhan XB, Shen YQ (2010) Improvement of the CuZn-superoxide dismutase enzyme activity and stability as a therapeutic agent by modification with polysialic acids. Biotechnol Lett 32:1939–1945

    CAS  PubMed  Google Scholar 

  • Xiong Y, Gao J, Zheng J, Deng N (2011) Effects of succinic anhydride modification on laccase stability and phenolics removal efficiency. Chin J Catal 32:1584–1591

    CAS  Google Scholar 

  • Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    CAS  Google Scholar 

  • Xue Y, Li S, Zhang H, Nie H, Zhu L, Branford-White CJ (2009) Enzyme design by chemical modification of papain lysine. 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009

  • Xue Y, Wu C, Branford-White CJ, Ning X, Nie H, Zhu L (2010) Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity. J Mol Catal B 63:188–193

    CAS  Google Scholar 

  • Yamaguchi S, Yokoe M (2000) A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Domach M, Auger R, Yang FX, Russell AJ (1996) Polyethylene glycol-induced stabilization of subtilisin. Enzyme Microb Technol 18:82–89

    CAS  Google Scholar 

  • Yie HY, Yamaguchi S, Matsumura Y (2006) Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of wheat gluten. J Agric Food Chem 54:6034–6040

    Google Scholar 

  • Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454

    CAS  PubMed  Google Scholar 

  • Zaks A, Klibanov AM (1988) The effect of water on enzyme action in organic media. J Biol Chem 263:8017–8021

    CAS  PubMed  Google Scholar 

  • Zale SE, Klibanov AM (1986) Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry (NY) 25:5432–5444

    CAS  Google Scholar 

  • Zhang Z, He Z, Guan G (1999) Thermal stability and thermodynamic analysis of native and methoxypolyethylene glycol modified trypsin. Biotechnol Tech 13:781–786

    CAS  Google Scholar 

  • Zhang Z, He Z, He M (2001) Stabilization mechanism of MPEG modified trypsin based on thermal inactivation kinetic analysis and molecular modeling computation. J Mol Catal B 14:85–94

    CAS  Google Scholar 

  • Zhang Y, Liang J, Fu E, Li B (2007) Effect of modified enzymatic catalysis on the extraction of diosgenin from Dioscorea zingiberensis C.H. Wright. Chem Eng Technol 30:1488–1494

    CAS  Google Scholar 

  • Zhang Y, Tang L, An X, Fu E, Ma C (2009) Modification of cellulase and its application to extraction of diosgenin from Dioscorea zingiberensis C.H. Wright. Biochem Eng J 47:80–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge J. Minten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minten, I.J., Abello, N., Schooneveld-Bergmans, M.E.F. et al. Post-production modification of industrial enzymes. Appl Microbiol Biotechnol 98, 6215–6231 (2014). https://doi.org/10.1007/s00253-014-5799-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5799-z

Keywords

Navigation