Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors

Abstract

Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol–gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alferness P, Wiebe L (2002) Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection. J Agric Food Chem 50:3926–3934

    CAS  PubMed  Article  Google Scholar 

  2. Andreescu S, Barthelmebs L, Marty J-L (2002) Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal Chim Acta 464:171–180

    CAS  Article  Google Scholar 

  3. Barchanska H, Kowalska A, Poloczek B (2013) Extraction procedures for the study of phytotoxicity and degradation processes of selected triketones in a water ecosystem. Environ Sci Pollut Res Int. doi:10.1007/s11356-013-2425-z

    PubMed Central  PubMed  Google Scholar 

  4. Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L (2011) Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Control 22:737–743

    CAS  Article  Google Scholar 

  5. Ben Oujji N, Bakas I, Istamboulie G, Ait-Ichou I, Ait-Addi E, Rouillon R, Noguer T (2012) Acetylcholinesterase immobilized on magnetic beads for pesticides detection: application to olive oil analysis. Sensors (Basel) 12:7893–7904

    CAS  Article  Google Scholar 

  6. Brix R, Noguerol T-N, Piña B, Balaam J, Nilsen AJ, Tollefsen K-E, Levy W, Schramm K-W, Barceló D (2010) Evaluation of the suitability of recombinant yeast-based estrogenicity assays as a pre-screening tool in environmental samples. Environ Int 36:361–367

    CAS  PubMed  Article  Google Scholar 

  7. Calvayrac C, Martin-Laurent F, Faveaux A, Picault N, Panaud O, Coste C-M, Chaabane H, Cooper J-F (2012) Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. Pest Manag Sci 68:340–347

    CAS  PubMed  Article  Google Scholar 

  8. Chaabane H, Cooper J-F, Azouzi L, Coste C-M (2005) Influence of soil properties on the adsorption-desorption of sulcotrione and its hydrolysis metabolites on various soils. J Agric Food Chem 53:4091–4095

    CAS  PubMed  Article  Google Scholar 

  9. Chaabane H, Vulliet E, Calvayrac C, Coste C-M, Cooper J-F (2008) Behaviour of sulcotrione and mesotrione in two soils. Pest Manag Sci 64:86–93

    CAS  PubMed  Article  Google Scholar 

  10. Da Silva Pinto L, Gonçales RA, Conceição FR, Knabah PF, Borsuk S, Campos VF, Arruda FV, Leite FPL (2012) Stability, oviposition attraction, and larvicidal activity of binary toxin from Bacillus sphaericus expressed in Escherichia coli. Appl Microbiol Biotechnol 95:1235–1241

    CAS  PubMed  Article  Google Scholar 

  11. Dayan FE, Duke SO, Sauldubois A, Singh N, McCurdy C, Cantrell C (2007) p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry 68:2004–2014

    CAS  PubMed  Article  Google Scholar 

  12. Dayan FE, Singh N, McCurdy CR, Godfrey CA, Larsen L, Weavers RT, Van Klink JW, Perry NB (2009) β-Triketone inhibitors of plant p-hydroxyphenylpyruvate dioxygenase: modeling and comparative molecular field analysis of their interactions. J Agric Food Chem 57:5194–5200

    CAS  PubMed  Article  Google Scholar 

  13. Denoya CD, Skinner DD, Morgenstern MR (1994) A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol 176:5312–5319

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Depagne C, Roux C, Coradin T (2011) How to design cell-based biosensors using the sol–gel process. Anal Bioanal Chem 400:965–976

    CAS  PubMed  Article  Google Scholar 

  15. Desimone MF, De Marzi MC, Copello GJ, Fernández MM, Pieckenstain FL, Malchiodi EL, Diaz LE (2006) Production of recombinant proteins by sol–gel immobilized Escherichia coli. Enzyme Microb Tech 40:168–171

    CAS  Article  Google Scholar 

  16. Di Gennaro P, Bruzzese N, Anderlini D, Aiossa M, Papacchini M, Campanella L, Bestetti G (2011) Development of microbial engineered whole-cell systems for environmental benzene determination. Ecotoxicol Environ Safe 74:542–549

    Article  Google Scholar 

  17. Durand S, Sancelme M, Besse-Hoggan P, Combourieu B (2010) Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling. Chemosphere 81:372–380

    CAS  PubMed  Article  Google Scholar 

  18. European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for the community action in the field of water policy (Water Framework Directive). Off J Eur Comm Ser L327:1–73

    Google Scholar 

  19. European Union (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the community action to achieve sustainable use of pesticides. Off J Eur Comm Ser L309:71–86

    Google Scholar 

  20. Espigares M, Crovetto G, Gálvez R (1998) In vitro evaluation of the toxicity of several dithiocarbamates using an Escherichia coli growth inhibition bioassay and the acetylcholinesterase inhibition test. Environ Toxicol Water 13:165–174

    CAS  Article  Google Scholar 

  21. Freitas LG, Götz CW, Ruff M, Singer HP, Müller SR (2004) Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1028:277–286

    CAS  PubMed  Article  Google Scholar 

  22. Fritze IM, Linden L, Freigang J, Auerbach G, Huber R, Steinbacher S (2004) The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol 134:1388–1400

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Giardi MT, Guzzella L, Euzet P, Rouillon R, Esposito D (2005) Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants. Environ Sci Technol 39:5378–5384

    CAS  PubMed  Article  Google Scholar 

  24. Gueuné H, Thouand G, Durand M-J (2009) A new bioassay for the inspection and identification of TBT-containing antifouling paint. Mar Pollut Bull 58:1734–1738

    PubMed  Article  Google Scholar 

  25. Hayat A, Barthelmebs L, Marty J-L (2011) Enzyme-linked immunosensor based on super paramagnetic nanobeads for easy and rapid detection of okadaic acid. Anal Chim Acta 690:248–252

    CAS  PubMed  Article  Google Scholar 

  26. Jeong E-Y, Jeon J-H, Kim H-W, Kim M-G, Lee H-S (2009) Antimicrobial activity of leptospermone and its derivatives against human intestinal bacteria. Food Chem 115:1401–1404

    CAS  Article  Google Scholar 

  27. Kamga Wagheu J, Forano C, Besse-Hoggan P, Tonle IK, Ngameni E, Mousty C (2013) Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes. Talanta 103:337–343

    CAS  PubMed  Article  Google Scholar 

  28. Keith KE, Killip L, He P, Moran GR, Valvano MA (2007) Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. J Bacteriol 189:9057–9065

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Keon J, Hargreaves J (1998) Isolation and heterologous expression of a gene encoding 4-hydroxyphenylpyruvate dioxygenase from the wheat leaf-spot pathogen, Mycosphaerella graminicola. FEMS Microbiol Lett 161:337–343

    CAS  PubMed  Article  Google Scholar 

  30. Lederer B, Böger P (2005) Recombinant p-hydroxyphenylpyruvate dioxygenase of high activity. Z Naturforsch C 60:549–556

    CAS  PubMed  Google Scholar 

  31. Lee MH, Zhang ZH, MacKinnon CH, Baldwin JE, Crouch NP (1996) The C-terminal of rat 4-hydroxyphenylpyruvate dioxygenase is indispensable for enzyme activity. FEBS Lett 393:269–272

    CAS  PubMed  Article  Google Scholar 

  32. Lee DL, Prisbylla MP, Cromartie TH, Dagarin DP, Howard SW, Provan WM, Ellis MK, Fraser T, Mutter LC (1997) The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci 45:601–609

    CAS  Google Scholar 

  33. Lee C-M, Yeo Y-S, Lee J-H, Kim S-J, Kim J-B, Han NS, Koo B-S, Yoon S-H (2008) Identification of a novel 4-hydroxyphenylpyruvate dioxygenase from the soil metagenome. Biochem Biophys Res Commun 370:322–326

    CAS  PubMed  Article  Google Scholar 

  34. Liang K, Yang L, Xiao Z, Huang J (2009) A bipartite recombinant yeast system for the identification of subtype-selective estrogen receptor ligands. Mol Biotechnol 41:53–62

    PubMed  Article  Google Scholar 

  35. Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO, Nanayakkara D, Khan IA, Abourashed EA, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288

    CAS  PubMed  Article  Google Scholar 

  36. Mitchell RJ, Gu MB (2006) Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosens Bioelectron 22:192–199

    CAS  PubMed  Article  Google Scholar 

  37. Moran GR (2005) 4-Hydroxyphenylpyruvate dioxygenase. Arch Biochem Biophys 433:117–128

    CAS  PubMed  Article  Google Scholar 

  38. Norris SR, Shen X, Della Penna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117:1317–1323

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. Pileggi M, Pileggi SAV, Olchanheski LR, da Silva PAG, Munoz Gonzalez AM, Koskinen WC, Barber B, Sadowsky MJ (2012) Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. Chemosphere 86:1127–1132

    CAS  PubMed  Article  Google Scholar 

  40. Porter NG, Wilkins AL (1999) Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 50:407–415

    CAS  PubMed  Article  Google Scholar 

  41. Premkumar JR, Rosen R, Belkin S, Lev O (2002) Sol–gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films. Anal Chim Acta 462:11–23

  42. Raspail C, Graindorge M, Moreau Y, Crouzy S, Lefèbvre B, Robin AY, Dumas R, Matringe M (2011) 4-Hydroxyphenylpyruvate dioxygenase catalysis: identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme. J Biol Chem 286:26061–26070

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage AA (2009) Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol 75:493–503

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Schofield DA, Westwater C, Barth JL, DiNovo AA (2007) Development of a yeast biosensor-biocatalyst for the detection and biodegradation of the organophosphate paraoxon. Appl Microbiol Biotechnol 76:1383–1394

    CAS  PubMed  Article  Google Scholar 

  45. Schulz A, Ort O, Beyer P, Kleinig H (1993) SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 318:162–166

    CAS  PubMed  Article  Google Scholar 

  46. Shin HJ (2012) Agarose-gel-immobilized recombinant bacterial biosensors for simple and disposable on-site detection of phenolic compounds. Appl Microbiol Biotechnol 93:1895–1904

    CAS  PubMed  Article  Google Scholar 

  47. Van Klink JW, Larsen L, Perry NB, Weavers RT, Cook GM, Bremer PJ, MacKenzie AD, Kirikae T (2005) Triketones active against antibiotic-resistant bacteria: synthesis, structure–activity relationships, and mode of action. Bioorg Med Chem 13:6651–6662

    PubMed  Article  Google Scholar 

  48. Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    CAS  PubMed  Article  Google Scholar 

  49. Yang C, Pflugrath JW, Camper DL, Foster ML, Pernich DJ, Walsh TA (2004) Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases. Biochemistry 43:10414–10423

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

Emilie Rocaboy is very grateful to UPVD for financial support. This study was carried out as the part of the research project TRICETOX through the ANR-13-CESA-0002.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lise Barthelmebs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rocaboy-Faquet, E., Noguer, T., Romdhane, S. et al. Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Appl Microbiol Biotechnol 98, 7243–7252 (2014). https://doi.org/10.1007/s00253-014-5793-5

Download citation

Keywords

  • Bioassay
  • HPPD
  • β-Triketones
  • Sol–gel
  • E. coli