Skip to main content
Log in

Application of new metabolic engineering tools for Clostridium acetobutylicum

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The renewed interests in clostridial acetone-butanol-ethanol (ABE) fermentation as a next-generation biofuel source led to significantly intensified research in the past few years. This mini-review focuses on the current status of metabolic engineering techniques available for the model organism of ABE fermentation, Clostridium acetobutylicum. A comprehensive survey of various application examples covers two general issues related to both basic and applied research questions: (i) how to improve biofuel production and (ii) what information can be deduced from respective genotype/phenotype manipulations. Recently developed strategies to engineer C. acetobutylicum are summarized including the current portfolio of altered gene expression methodologies, as well as systematic (rational) and explorative (combinatorial) metabolic engineering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78(22):8112–8121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Hinai MA, Jones MAA, Papoutsakis ET (2014) σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. J Bacteriol 196(2):287–299

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7(10):715–723

    CAS  PubMed  Google Scholar 

  • Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105(6):1131–1147

    CAS  PubMed  Google Scholar 

  • Bankar SB, Survase SA, Ojamo H, Granström T (2013) Biobutanol: the outlook of an academic and industrialist. RSC Adv 3(47):24734–24757

    CAS  Google Scholar 

  • Berezina OV, Zakharova NV, Yarotsky CV, Zverlov VV (2012) Microbial producers of butanol. Appl Biochem Microbiol 48(7):625–638

    CAS  Google Scholar 

  • Bi C, Jones SW, Hess DR, Tracy MBP, Papoutsakis ET (2011) SpoIIE is necessary for asymmetric division, sporulation, and expression of σF, σE, and σG but does not control solvent production in Clostridium acetobutylicum ATCC 824. J Bacteriol 193(19):5130–5137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biot-Pelletier D, Martin VJ (2014) Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5616-8

    PubMed  Google Scholar 

  • Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222–227

    CAS  PubMed  Google Scholar 

  • Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73(9):3061–3068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borden JR, Jones SW, Indurthi D, Chen Y, Terry Papoutsakis E (2010) A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing. Metab Eng 12(3):268–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowring SN, Morris JG (1985) Mutagenesis of Clostridium acetobutylicum. J Appl Microbiol 58(6):577–584

    CAS  Google Scholar 

  • Branduardi P, de Ferra F, Longo V, Porro D (2014) Microbial n-butanol production from Clostridia to non-Clostridial hosts. Eng Life Sci 14(1):16–26

    CAS  Google Scholar 

  • Caspeta L, Buijs NAA, Nielsen J (2013) The role of biofuels in the future energy supply. Energy Environ Sci 6(4):1077–1082

    CAS  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    CAS  PubMed  Google Scholar 

  • Clark SW, Bennett GN, Rudolph FB (1989) Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl Environ Microbiol 55(4):970–976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collas F, Kuit W, Clement B, Marchal R, Lopez-Contreras AM, Monot F (2012) Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2(1):45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum Acetone-Butanol-Ethanol fermentation pathway. Metab Eng 14(6):630–641

    CAS  PubMed  Google Scholar 

  • Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y (2012) Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels 5(1):44

    PubMed Central  PubMed  Google Scholar 

  • Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65(3):936–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desai RP, Harris LM, Welker NE, Papoutsakis ET (1999) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab Eng 1(3):206–213

    CAS  PubMed  Google Scholar 

  • Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 79:563–590

    CAS  PubMed  Google Scholar 

  • Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2(1):47–58

    CAS  PubMed  Google Scholar 

  • Dong H, Zhang Y, Dai Z, Li Y (2010) Engineering Clostridium strain to accept unmethylated DNA. PLoS One 5(2):e9038

  • Dong H, Tao W, Dai Z, Yang L, Gong F, Zhang Y, Li Y (2012a) Biobutanol. Adv Biochem Eng Biotechnol 128:85–100

    CAS  PubMed  Google Scholar 

  • Dong H, Tao W, Zhang Y, Li Y (2012b) Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: a useful tool for strain engineering. Metab Eng 14(1):59–67

    CAS  PubMed  Google Scholar 

  • Dong H, Tao W, Gong F, Li Y, Zhang Y (2014) A functional recT gene for recombineering of Clostridium. J Biotechnol 173:65–67

  • Dürre P, Hollergschwandner C (2004) Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10(2):69–74

    PubMed  Google Scholar 

  • Dusséaux S, Croux C, Soucaille P, Meynial-Salles I (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8

    PubMed  Google Scholar 

  • Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85(6):1697–1712

    CAS  PubMed  Google Scholar 

  • Feustel L, Nakotte S, Dürre P (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 70(2):798–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184(3):821–830

  • Gao K, Li Y, Tian S, Yang X (2012a) Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover. World J Microbiol Biotechnol 28(10):2963–2971

    PubMed  Google Scholar 

  • Gao X, Zhao H, Zhang G, He K, Jin Y (2012b) Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Curr Microbiol 65(2):128–132

    CAS  PubMed  Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 27(6):764–781

    CAS  PubMed  Google Scholar 

  • Girbal L, Mortier-Barriere I, Raynaud F, Rouanet C, Croux C, Soucaille P (2003) Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum. Appl Environ Microbiol 69(8):4985–4988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol 57–58:213–221

    PubMed  Google Scholar 

  • Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142(8):2079–2086

    CAS  PubMed  Google Scholar 

  • Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17(3):462–471

    CAS  PubMed  Google Scholar 

  • Grupe H, Gottschalk G (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microbiol 58(12):3896–3902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6(11):1348–1357

    CAS  PubMed  Google Scholar 

  • Harris L, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27(5):322–328

  • Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184(13):3586–3597

  • Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Meth 70(3):452–464

    CAS  Google Scholar 

  • Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Meth 78(1):79–85

    CAS  Google Scholar 

  • Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Meth 80(1):49–55

    CAS  Google Scholar 

  • Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40(8):e59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hönicke D, Janssen H, Grimmler C, Ehrenreich A, Lütke-Eversloh T (2012) Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios. N Biotechnol 29(4):485–493

    PubMed  Google Scholar 

  • Hou X, Peng W, Xiong L, Huang C, Chen X, Chen X, Zhang W (2013) Engineering Clostridium acetobutylicum for alcohol production. J Biotechnol 166(1–2):25–33

    CAS  PubMed  Google Scholar 

  • Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY (2012a) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7(2):186–198

    CAS  PubMed  Google Scholar 

  • Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee SH, Song H, Cho JH, Seung do Y, Lee SY (2012b) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio 3(5):e00314–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang YS, Malaviya A, Cho C, Lee J, Lee SY (2012c) Butanol production from renewable biomass by clostridia. Bioresour Technol 123:653–663

    CAS  PubMed  Google Scholar 

  • Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY (2012d) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30(5):989–1000

    CAS  PubMed  Google Scholar 

  • Jang YS, Malaviya A, Lee J, Im JA, Lee SY, Eom MH, Cho JH, Seung DY (2013a) Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Prog 29(4):1083–1088

    CAS  PubMed  Google Scholar 

  • Jang YS, Malaviya A, Lee SY (2013b) Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol Bioeng 110(6):1646–1653

    CAS  PubMed  Google Scholar 

  • Jang YS, Woo HM, Im JA, Kim IH, Lee SY (2013c) Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol 97(21):9355–9363

    CAS  PubMed  Google Scholar 

  • Jang YS, Im JA, Choi SY, Lee JI, Lee SY (2014) Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab Eng. doi:10.1016/j.ymben.2014.03.004i

    PubMed  Google Scholar 

  • Janssen H, Grimmler C, Ehrenreich A, Bahl H, Fischer RJ (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—solvent stress caused by a transient n-butanol pulse. J Biotechnol 161(3):354–365

    CAS  PubMed  Google Scholar 

  • Jia K, Zhang Y, Li Y (2010) Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sci 10(5):422–429

    CAS  Google Scholar 

  • Jia K, Zhu Y, Zhang Y, Li Y (2011) Group II intron-anchored gene deletion in Clostridium. PLoS One 6(1):e16693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia K, Zhang Y, Li Y (2012) Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. PLoS One 7:e38815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4–5):284–291

    CAS  PubMed  Google Scholar 

  • Jin C, Yao M, Liu H, Lee CFF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sust Energ Rev 15(8):4080–4106

    CAS  Google Scholar 

  • Jin L, Zhang H, Chen L, Yang C, Yang S, Jiang W, Gu Y (2014) Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum. J Biotechnol 173:7–9

    CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones SW, Tracy BP, Gaida SM, Papoutsakis ET (2011) Inactivation of σF in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes σE and σG protein expression but does not block solvent formation. J Bacteriol 193(10):2429–2440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junelles AM, Janati-Idrissi R, Kanouni A, Petitdemange H, Gay R (1987) Acetone-butanol fermentation by mutants selected for resistance to acetate and butyrate halogen analogues. Biotechnol Lett 9(3):175–178

    CAS  Google Scholar 

  • Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijärvi A, Väkevä M, van Heiningen A, Granström T (2012) Butanol production from lignocellulosics. Biotechnol Lett 34(8):1415–1434

    CAS  PubMed  Google Scholar 

  • Karberg M, Guo H, Zhong J, Coon R, Perutka J, Lambowitz AM (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19(12):1162–1167

    CAS  PubMed  Google Scholar 

  • Kellermann SJ, Rentmeister A (2014) Current developments in cellulase engineering. ChemBioEng Rev 1(1):6–13

    Google Scholar 

  • Kim HJ, Turner TL, Jin Y-S (2013) Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnol Adv 31(6):976–985

    CAS  PubMed  Google Scholar 

  • Kovács K, Willson BJ, Schwarz K, Heap JT, Jackson A, Bolam DN, Winzer K, Minton NP (2013) Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 6(1):117

    PubMed Central  PubMed  Google Scholar 

  • Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X, Okano K, Ohtake H (2013) In vitro production of n-butanol from glucose. Metab Eng 20:84–91

    CAS  PubMed  Google Scholar 

  • Kuehne SA, Minton NP (2012) ClosTron-mediated engineering of Clostridium. Bioeng Bugs 3(4):247–254

    Google Scholar 

  • Kuit W, Minton NP, López-Contreras AM, Eggink G (2012) Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl Microbiol Biotechnol 94(3):729–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012

    CAS  Google Scholar 

  • Lee SY, Bennett GN, Papoutsakis ET (1992a) Construction of Escherichia coli-Clostridium acetobutylicum shuttle vectors and transformation of Clostridium acetobutylicum strains. Biotechnol Lett 14(5):427–432

    CAS  Google Scholar 

  • Lee SY, Mermelstein LD, Bennett GN, Papoutsakis ET (1992b) Vector construction, transformation, and gene amplification in Clostridium acetobutylicum ATCC 824. Ann N Y Acad Sci 665:39–51

    CAS  PubMed  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228

    CAS  PubMed  Google Scholar 

  • Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung do Y, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann D, Lütke-Eversloh T (2011) Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. Metab Eng 13(5):464–473

    CAS  PubMed  Google Scholar 

  • Lehmann D, Hönicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Lütke-Eversloh T (2012a) Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Appl Microbiol Biotechnol 94(3):743–754

    CAS  PubMed  Google Scholar 

  • Lehmann D, Radomski N, Lütke-Eversloh T (2012b) New insights into the butyric acid metabolism of Clostridium acetobutylicum. Appl Microbiol Biotechnol 96(5):1325–1339

    CAS  PubMed  Google Scholar 

  • Lemmel SA (1985) Mutagenesis in Clostridium acetobutylicum. Biotechnol Lett 7:711–716

    CAS  Google Scholar 

  • Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Xiao H, Jiang W, Jiang Y, Yang S (2013) Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Appl Biochem Biotechnol 171(3):555–568

    CAS  PubMed  Google Scholar 

  • Li HG, Luo W, Wang Q, Yu XB (2014) Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl Biochem Biotechnol. doi:10.1007/s12010-014-0765-x

    Google Scholar 

  • Lim JH, Seo SW, Kim SY, Jung GY (2013) Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng 20:56–62

    CAS  PubMed  Google Scholar 

  • Linhová M, Branská B, Patáková P, Lipovsky J, Fribert P, Rychtera M, Melzoch K (2012) Rapid flow cytometric method for viability determination of solventogenic clostridia. Folia Microbiol 57(4):307–311

    Google Scholar 

  • Liu S, Qureshi N (2010) How microbes tolerate ethanol and butanol. N Biotechnol 26(3–4):117–121

    Google Scholar 

  • Liu L, Zhang L, Tang W, Gu Y, Hua Q, Yang S, Jiang W, Yang C (2012a) Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. J Bacteriol 194(19):5413–5422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu XB, Gu QY, Yu XB, Luo W (2012b) Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation. J Microbiol 50(6):1024–1028

    CAS  PubMed  Google Scholar 

  • Luan G, Cai Z, Gong F, Dong H, Lin Z, Zhang Y, Li Y (2013) Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system. Protein Cell 4(11):854–862

    CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22(5):634–647

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Stephanopoulos G (2005) Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Appl Environ Microbiol 71(11):7224–7228

    PubMed Central  PubMed  Google Scholar 

  • Mann MS, Lütke-Eversloh T (2013) Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnol Bioeng 110(3):887–897

    CAS  PubMed  Google Scholar 

  • Mann MS, Dragovic Z, Schirrmacher G, Lütke-Eversloh T (2012) Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett 34(9):1643–1649

    CAS  PubMed  Google Scholar 

  • Mao S, Luo Y, Zhang T, Li J (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9(6):3046–3061

    CAS  PubMed  Google Scholar 

  • Mao S, Luo Y, Bao G, Zhang Y, Li Y, Ma Y (2011) Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. Mol BioSyst 7(5):1660–1677

    CAS  PubMed  Google Scholar 

  • Mariano AP, Filho RM (2012) Improvements in biobutanol fermentation and their impacts on distillation energy consumption and wastewater generation. Bioenergy Res 5(2):504–514

    CAS  Google Scholar 

  • Mascal M (2012) Chemicals from biobutanol: technologies and markets. Biofuels Bioprod Bioref 6(4):483–493

    CAS  Google Scholar 

  • Medkor N, Zerdani I, Sattar S (2010) Isolation of Clostridium acetobutylicum ATCC824 mutants using propionic and isovaleric acid halogen analogues as suicide substrates. Int J Microbiol Res 1(1):22–25

    Google Scholar 

  • Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage ϕ3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59(4):1077–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Nat Biotechnol 10(2):190–195

    CAS  Google Scholar 

  • Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN (1993) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnol Bioeng 42(9):1053–1060

    CAS  PubMed  Google Scholar 

  • Moholkar VS, Ranjan A, Mayank R (2012) Economics of biobutanol: a review. Res J Pharm Biol Chem Sci 3(4):901–913

    Google Scholar 

  • Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181(1):319–330

  • Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423

    CAS  PubMed  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331

    CAS  PubMed  Google Scholar 

  • Oultram JD, Loughlin M, Swinfield TJ, Brehm JK, Thompson DE, Minton NP (1988) Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiol Lett 56(1):83–88

    CAS  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19(5):420–429

    CAS  PubMed  Google Scholar 

  • Paredes CJ, Alsaker KV, Papoutsakis ET (2005) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3(12):969–978

    CAS  PubMed  Google Scholar 

  • Pasteur L (1862) Quelques résultats nouveaux relatifs aux fermentations acétique et butyrique. Bulletin de la Société Chimique de Paris:52-53

  • Patáková P, Linhová M, Rychtera M, Paulova L, Melzoch K (2013) Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv 31(1):58–67

    PubMed  Google Scholar 

  • Ranjan A, Moholkar VS (2012) Biobutanol: science, engineering, and economics. Int J Energy Res 36(3):277–323

    CAS  Google Scholar 

  • Rellos P, Ma J, Scopes RK (1997) Alteration of substrate specificity of Zymomonas mobilis alcohol dehydrogenase-2 using in vitro random mutagenesis. Protein Expr Purif 9(1):83–90

    CAS  PubMed  Google Scholar 

  • Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12(5):446–454

    CAS  PubMed  Google Scholar 

  • Ren C, Gu Y, Wu Y, Zhang W, Yang C, Yang S, Jiang W (2012) Pleiotropic functions of catabolite control protein CcpA in butanol-producing Clostridium acetobutylicum. BMC Genomics 13(1):349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rothstein DM (1986) Clostridium thermosaccharolyticum strain deficient in acetate production. J Bacteriol 165:319–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1(4):283–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheel M, Lütke-Eversloh T (2013) New options to engineer biofuel microbes: development and application of a high-throughput screening system. Metab Eng 17C:51–58

    Google Scholar 

  • Scotcher MC, Bennett GN (2005) SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. J Bacteriol 187(6):1930–1936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Servinsky MD, Germane KL, Liu S, Kiel JT, Clark AM, Shankar J, Sund CJ (2012) Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824. J Ind Microbiol Biotechnol 39(12):1859–1867

    CAS  PubMed  Google Scholar 

  • Shao L, Hu S, Yang Y, Gu Y, Chen J, Jiang W, Yang S (2007) Targeted gene disruption by use of a group II intron (Targetron) vector in Clostridium acetobutylicum. Cell Res 17(11):963–965

    CAS  PubMed  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102(1):38–49

    CAS  PubMed  Google Scholar 

  • Soucaille P, Figge R, Croux C (2008) Process for chromosomal integration and DNA sequence replacement in clostridia. International Patent WO 2008/040387

  • Steiner E, Dago AE, Young DI, Heap JT, Minton NP, Hoch JA, Young M (2011) Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 80(3):641–654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tangney M, Mitchell WJ (2007) Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 74(2):398–405

    CAS  PubMed  Google Scholar 

  • Thomas L, Joseph A, Gottumukkala LD (2014) Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresour Technol. doi:10.1016/j.biortech.2014.01.140

    Google Scholar 

  • Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44:167–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thormann K, Dürre P (2001) Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum? J Ind Microbiol Biotechnol 27(5):307–313

  • Thormann K, Feustel L, Lorenz K, Nakotte S, Dürre P (2002) Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 184(7):1966–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol 69(8):4951–4965

  • Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186(7):2006–2018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tracy BP, Gaida SM, Papoutsakis ET (2008) Development and application of flow-cytometric techniques for analyzing and sorting endospore-forming clostridia. Appl Environ Microbiol 74(24):7497–7506

  • Tracy BP, Gaida SM, Papoutsakis ET (2010) Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr Opin Biotechnol 21(1):85–99

    CAS  PubMed  Google Scholar 

  • Tracy BP, Jones SW, Papoutsakis ET (2011) Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol 193(6):1414–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23(3):364–381

    CAS  PubMed  Google Scholar 

  • Truffaut N, Hubert J, Reysset G (1989) Construction of shuttle vectors useful for transforming Clostridium acetobutylicum. FEMS Microbiol Lett 58(1):15–20

    CAS  Google Scholar 

  • Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65(9):3793–3799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tummala SB, Junne SG, Papoutsakis ET (2003a) Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J Bacteriol 185(12):3644–3653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tummala SB, Welker NE, Papoutsakis ET (2003b) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 185(6):1923–1934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ventura JRS, Hu H, Jahng D (2013) Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. Appl Microbiol Biotechnol 97(16):7505–7516

    CAS  PubMed  Google Scholar 

  • Wang Y, Li X, Milne CB, Janssen H, Lin W, Phan G, Hu H, Jin YS, Price ND, Blaschek HP (2013) Development of a gene knockout system using mobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microbiol 79(19):5853–5863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiesenborn D, Rudolph F, Papoutsakis E (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54(11):2717–2722

  • Wietzke M, Bahl H (2012) The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Appl Microbiol Biotechnol 96(3):749–761

    CAS  PubMed  Google Scholar 

  • Willims DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136(5):819–826

    Google Scholar 

  • Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288

    CAS  PubMed  Google Scholar 

  • Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S (2011) Confirmation and elimination of xylose-metabolic bottlenecks in glucose-PTS-deficient Clostridium acetobutylicum to realize simultaneous utilization of glucose, xylose and arabinose. Appl Environ Microbiol 77(22):7886–7895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue C, Zhao X-Q, Liu C-G, Chen L-J, Bai F-W (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31(8):1575–1584

    CAS  PubMed  Google Scholar 

  • Xue C, Zhao J-B, Chen L-J, Bai F-W, Yang S-T, Sun J-X (2014) Integrated butanol recovery for an advanced biofuel: current state and prospects. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5561-6

    Google Scholar 

  • Yang H, Li J, Shin H-d DG, Liu L, Chen J (2014) Molecular engineering of industrial enzymes: recent advances and future prospects. Appl Microbiol Biotechnol 98(1):23–29

    CAS  PubMed  Google Scholar 

  • Young M, Minton NP, Staudenbauer WL (1989) Recent advances in the genetics of the clostridia. FEMS Microbiol Rev 63(4):301–325

    CAS  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646

    CAS  PubMed  Google Scholar 

  • Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69(5):2831–2841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu L, Dong H, Zhang Y, Li Y (2011) Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 13(4):426–434

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Lütke-Eversloh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lütke-Eversloh, T. Application of new metabolic engineering tools for Clostridium acetobutylicum . Appl Microbiol Biotechnol 98, 5823–5837 (2014). https://doi.org/10.1007/s00253-014-5785-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5785-5

Keywords

Navigation