Skip to main content

Advertisement

Log in

Perspectives for the biotechnological production of ethyl acetate by yeasts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ethyl acetate is an environmentally friendly solvent with many industrial applications. The production of ethyl acetate currently proceeds by energy-intensive petrochemical processes which are based on natural gas and crude oil without exception. Microbial synthesis of ethyl acetate could become an interesting alternative. The formation of esters as aroma compounds in food has been repeatedly reviewed, but a survey which deals with microbial synthesis of ethyl acetate as a bulk product is missing. The ability of yeasts for producing larger amounts of this ester is known for a long time. In the past, this potential was mainly of scientific interest, but in the future, it could be applied to large-scale ester production from renewable raw materials. Pichia anomala, Candida utilis, and Kluyveromyces marxianus are yeasts which convert sugar into ethyl acetate with a high yield where the latter is the most promising one. Special attention was paid to the mechanism of ester synthesis including regulatory aspects and to the maximum and expectable yield. Synthesis of much ethyl acetate requires oxygen which is usually supplied by aeration. Ethyl acetate is highly volatile so that aeration results in its phase transfer and stripping. This stripping process cannot be avoided but requires adequate handling during experimentation and offers a chance for a cost-efficient process-integrated recovery of the synthesized ester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    CAS  PubMed  Google Scholar 

  • Armstrong DW, Yamazaki H (1984) Effect of iron and EDTA on ethyl acetate accumulation in Candida utilis. Biotechnol Lett 6:819–824

    CAS  Google Scholar 

  • Armstrong DW, Martin SM, Yamazaki H (1984a) Production of ethyl acetate from dilute ethanol solutions by Candida utilis. Biotechnol Bioeng 26:1038–1041

    CAS  PubMed  Google Scholar 

  • Armstrong DW, Martin SM, Yamazaki H (1984b) Production of acetaldehyde from ethanol by Candida utilis. Biotechnol Lett 6:183–188

    CAS  Google Scholar 

  • Armstrong DW, Martin SM, Yamazaki H (1988) Selective production of ethyl acetate and acetaldehyde by microorganisms. U.S. Pat 4,720,457

  • Arpe H-J (2007) Industrielle Organische Chemie, Bedeutende Vor- und Zwischenprodukte. Wiley-VCH, Weinheim

    Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    CAS  Google Scholar 

  • Atkinson R (2007) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ 41:S200–S240

    CAS  Google Scholar 

  • Aziz S, Memon HUR, Shah FA, Rajoka MI, Soomro SA (2009) Production of ethanol by indigenous wild and mutant strain of thermotolerant Kluyveromyces marxianus under optimized fermentation conditions. Pak J Anal Environ Chem 10(1+2):25–33

    CAS  Google Scholar 

  • Barnett JA (2004) A history of research on yeasts 8: taxonomy. Yeast 21:1141–1193

    CAS  PubMed  Google Scholar 

  • Beijerinck MW (1892) Zur Ernährung des Kahmpilzes. Zentbl Bakt Parasitenk Abt I 11:68–75

    Google Scholar 

  • Bol J, Knol W, ten Brik B (1987) Optimization of the production of ethyl acetate from ethanol by Hansenula anomala. Dechema Monogr 105:235–236

    Google Scholar 

  • Castrillo JI, Ugalde UO (1992) Energy metabolism of Kluyveromyces marxianus in deproteinated whey. Chemostat studies. Modelling. J Biotechnol 22:145–152

    Google Scholar 

  • Chan WC, Su MQ (2008) Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter. Bioresour Technol 99:8016–8021

    CAS  PubMed  Google Scholar 

  • Christen P, Domenech F, Páca J, Revah S (1999) Evaluation of four Candida utilis strains for biomass, acetic acid and ethyl acetate production from ethanol. Bioresour Technol 68:193–195

    CAS  Google Scholar 

  • Christensen AD, Kádár Z, Oleskowicz-Popiel P, Thomsen MH (2011) Production of bioethanol from organic whey using Kluyveromyces marxianus. J Ind Microbiol Biotechnol 38:283–289

    CAS  PubMed  Google Scholar 

  • Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int J Food Microbiol 108:239–245

    CAS  PubMed  Google Scholar 

  • Colley SW, Fawcett CR, Rathmell C, Marshall MW (2004) Process for the preparation of ethyl acetate. US Pat 6,809,217

  • Cordente AG, Curtin CD, Varela C, Pretorius IS (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96:601–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corzo G, Revah S, Christen P (1995) Effect of oxygen on the ethyl acetate production from continuous ethanol stream by Candida utilis in submerged cultures. Dev Food Sci 37B:1141–1154

    CAS  Google Scholar 

  • Covarrubias-Cervantes M, Champion D, Debeaufort F, Voilley A (2004) Aroma volatility from aqueous sucrose solutions at low and subzero temperatures. J Agric Food Chem 52:7064–7069

    CAS  PubMed  Google Scholar 

  • Covarrubias-Cervantes M, Bongard S, Champion D, Voilley A (2005) Temperature effect on solubility of aroma compounds in various aqueous solutions. Lebensm-Wiss Technol 38:371–378

    CAS  Google Scholar 

  • Cuillel M (2009) The dual personality of ionic copper in biology. J Incl Phenom Macrocycl Chem 65:165–170

    CAS  Google Scholar 

  • Davies R, Falkiner EA, Wilkinson JF, Peel JL (1951) Ester formation by yeasts 1. Ethyl acetate formation by Hansenula species. Biochem J 49:58–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Vrije T, Budde M, van der Wal H, Claassen PAM, López-Contreras AM (2013) “In situ” removal of isopropanol, butanol and ethanol from fermentation broth by gas stripping. Bioresour Technol 137:153–159

    PubMed  Google Scholar 

  • Druvefors UÄ, Passoth V, Schnürer J (2005) Nutrient effects on biocontrol of Penicillium roqueforti by Pichia anomala J121 during airtight storage of wheat. Appl Environ Microbiol 71:1865–1869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duboc P, von Stockar U (1998) Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotechnol Bioeng 58:428–439

    CAS  PubMed  Google Scholar 

  • Fonseca GG, Gombert AK, Heinzle E, Wittmann C (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res 7:422–435

    CAS  PubMed  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    CAS  PubMed  Google Scholar 

  • Fonseca GG, de Carvalho NMB, Gombert AK (2013) Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. Appl Microbiol Biotechnol 97:5055–5067

  • Fredlund E, Blank LM, Schnürer J, Sauer U, Passoth V (2004a) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fredlund E, Druvefors UÄ, Olstorpe MN, Passoth V, Schnürer J (2004b) Influence of ethyl acetate production and ploidy on the anti-mould activity of Pichia anomala. FEMS Microbiol Lett 238:133–137

  • Ghaly AE, El-Taweel AA (1997) Continuous ethanol production from cheese whey fermentation by Candida pseudotropicalis. Energy Source 19:1043–1063

    CAS  Google Scholar 

  • González Siso MI (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Google Scholar 

  • Gray WD (1949) Initial studies on the metabolism of Hansenula anomala (Hansen) Sydow. Am J Bot 36:475–480

    CAS  Google Scholar 

  • Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28:375–384

    PubMed  Google Scholar 

  • Hansen A, Schieberle P (2005) Generation of aroma compounds during sourdough fermentation: applied and fundamental aspects. Trends Food Sci Technol 16:85–94

    CAS  Google Scholar 

  • Hensing MCM, Bangma KA, Raamsdonk LM, de Hulster E, van Dijken JP, Pronk JT (1995) Effects of cultivation conditions on the production of heterologous α-galactosidase by Kluyveromyces lactis. Appl Microbiol Biotechnol 43:58–64

    CAS  Google Scholar 

  • Howard D, Anderson RG (1976) Cell-free synthesis of ethyl acetate by extracts from Saccharomyces cerevisiae. J Inst Brew 82:70–71

    CAS  Google Scholar 

  • Hua D, Xu P (2011) Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 29:654–660

    CAS  PubMed  Google Scholar 

  • Hwang S-CJ, Lee C-M, Lee H-C, Pua HF (2003) Biofiltration of waste gases containing both ethyl acetate and toluene using different combinations of bacterial cultures. J Biotechnol 105:83–94

    CAS  PubMed  Google Scholar 

  • Inoue Y, Fukuda K, Wakai Y, Sudsai T, Kimura A (1994) Ester formation by a yeast Hansenula mrakii IFO 0895: contribution of esterase for iso-amyl acetate production in sake brewing. Lebensm-Wiss Technol 27:189–193

    CAS  Google Scholar 

  • Inoue Y, Trevanichi S, Fukuda K, Izawa S, Wakai Y, Kimura A (1997) Roles of esterase and alcohol acetyltransferase on production of isoamyl acetate in Hansenula mrakii. J Agric Food Chem 45:644–649

    CAS  Google Scholar 

  • Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol carried out under pressure. J Catal 212:207–215

    CAS  Google Scholar 

  • Jain VK (2010) Modifying redox potential and its impact on metabolic fluxes in Saccharomyces cerevisiae. Dissertation, Stellenbosch University, Cape Town, South Africa

  • Janssens L, De Pooter HL, Schamp NM, Vandamme EJ (1992) Production of flavours by microorganisms. Process Biochem 27:195–215

    CAS  Google Scholar 

  • Jolly NP, Augustyn OPH, Pretorius IS (2006) The role and use of non-Saccharomyces yeasts in wine production. S Afr J Enol Vitic 27:15–39

    CAS  Google Scholar 

  • Kallel-Mhiri H, Miclo A (1993) Mechanism of ethyl acetate synthesis by Kluyveromyces fragilis. FEMS Microbiol Lett 111:207–212

    CAS  Google Scholar 

  • Kallel-Mhiri H, Engasser J-M, Miclo A (1993) Continuous ethyl acetate production by Kluyveromyces fragilis on whey permeate. Appl Microbiol Biotechnol 40:201–205

    CAS  Google Scholar 

  • Kam S-K, Kang K-H, Lee M-G (2005) Removal characteristics of ethyl acetate and 2-butanol by a biofilter packed with jeju scoria. J Microbiol Biotechnol 15:977–983

    CAS  Google Scholar 

  • Kashima Y, Iijima M, Okamoto A, Koizumi Y, Udaka S, Yanagida F (1998) Purification and characterization of intracellular esterases related to ethylacetate formation in Acetobacter pasteurianus. J Ferment Bioeng 85:584–588

    CAS  Google Scholar 

  • Kiers J, Zeeman A-M, Luttik M, Thiele C, Castrillo JI, Steensma HY, van Dijken JP, Pronk JT (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469

    CAS  PubMed  Google Scholar 

  • Kim S-J, Jung S-M, Park Y-C, Park K (2007) Lipase catalyzed transesterification of soybean oil using ethyl acetate, an alternative acyl acceptor. Biotechnol Bioprocess Eng 12:441–445

    CAS  Google Scholar 

  • Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197

    CAS  PubMed  Google Scholar 

  • Koutinas M, Peeva LG, Livingston AG (2005) An attempt to compare the performance of bioscrubbers and biotrickling filters for degradation of ethyl acetate in gas streams. J Chem Technol Biotechnol 80:1252–1260

    CAS  Google Scholar 

  • Kurita O (2008) Increase of acetate ester-hydrolysing esterase activity in mixed cultures of Saccharomyces cerevisiae and Pichia anomala. J Appl Microbiol 104:1051–1058

    CAS  PubMed  Google Scholar 

  • Kurtzman CP (1991) DNA relatedness among saturn-spored yeasts assigned to the genera Williopsis and Pichia. Antonie Van Leeuwenhoek 60:13–19

    CAS  PubMed  Google Scholar 

  • Kurtzman CP (2011) Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie Van Leeuwenhoek 99:13–23

    PubMed  Google Scholar 

  • Kusano M, Sakai Y, Kato N, Yoshimoto H, Sone H, Tamai Y (1998) Hemiacetal dehydrogenation activity of alcohol dehydrogenases in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 62:1956–1961

    CAS  PubMed  Google Scholar 

  • Kusano M, Sakai Y, Kato N, Yoshimoto H, Tamai Y (1999) A novel hemiacetal dehydrogenase activity involved in ethyl acetate synthesis in Candida utilis. J Biosci Bioeng 87:690–692

    CAS  PubMed  Google Scholar 

  • Lachance MA (1998) Kluyveromyces van der Walt emend. van der Walt. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 227–247

    Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26

    Google Scholar 

  • Laurema S, Erkama J (1968) Formation of ethyl acetate in Hansenula anomala. Acta Chem Scand 22:1482–1486

    CAS  PubMed  Google Scholar 

  • Levi S, Rovida E (2009) The role of iron in mitochondrial function. Biochim Biophys Acta 1790:629–636

    CAS  PubMed  Google Scholar 

  • Lin T-B, Chuang KT, Tsai K-Y, Chang J-R (1998) Process for ethyl acetate production. US Pat 5,770,761

  • Liu S-Q, Holland R, Crow VL (2004) Esters and their biosynthesis in fermented dairy products: a review. Int Dairy J 14:923–945

    CAS  Google Scholar 

  • Longo MA, Sanromán MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44:335–353

    CAS  Google Scholar 

  • Löser C, Schröder A, Deponte S, Bley T (2005) Balancing the ethanol formation in continuous bioreactors with ethanol stripping. Eng Life Sci 5:325–332

    Google Scholar 

  • Löser C, Urit T, Nehl F, Bley T (2011) Screening of Kluyveromyces strains for the production of ethyl acetate: design and evaluation of a cultivation system. Eng Life Sci 11:369–381

    Google Scholar 

  • Löser C, Urit T, Förster S, Stukert A, Bley T (2012) Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation. Appl Microbiol Biotechnol 96:685–696

    PubMed  Google Scholar 

  • Löser C, Urit T, Stukert A, Bley T (2013) Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J Biotechnol 163:17–23

    PubMed  Google Scholar 

  • Lu C, Zhao J, Yang S-T, Wei D (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387

    CAS  PubMed  Google Scholar 

  • Manjare SD, Ghoshal AK (2006a) Comparison of adsorption of ethyl acetate on activated carbon and molecular sieves 5A and 13X. J Chem Eng Data 51:1185–1189

    CAS  Google Scholar 

  • Manjare SD, Ghoshal AK (2006b) Adsorption equilibrium studies for ethyl acetate vapor and E-Merck 13X molecular sieve system. Sep Purif Technol 51:118–125

    CAS  Google Scholar 

  • Manjare SD, Ghoshal AK (2006c) Studies on adsorption of ethyl acetate vapor on activated carbon. Ind Eng Chem Res 45:6563–6569

    CAS  Google Scholar 

  • Mason AB, Dufour J-P (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16:1287–1298

    CAS  PubMed  Google Scholar 

  • Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47:195–203

    CAS  Google Scholar 

  • Mazutti MA, Zabot G, Boni G, Skovronski A, de Oliveira D, Di Luccio M, Rodrigues MI, Maugeri F, Treichel H (2010) Mathematical modeling of Kluyveromyces marxianus growth in solid-state fermentation using a packed-bed bioreactor. J Ind Microbiol Biotechnol 37:391–400

    CAS  PubMed  Google Scholar 

  • Medeiros ABP, Pandey A, Vandenberghe LPS, Pastore GM, Soccol CR (2006) Production and recovery of aroma compounds produced by solid-state fermentation using different adsorbents. Food Technol Biotechnol 44:47–51

    CAS  Google Scholar 

  • Mei J, Min H, Lü Z (2009) Enhanced biotransformation of L-phenylalanine to 2-phenylethanol using an in situ product adsorption technique. Process Biochem 44:886–890

    CAS  Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98:1260–1264

    CAS  PubMed  Google Scholar 

  • Møller K, Christensen B, Förster J, Piškur J, Nielsen J, Olsson L (2002) Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol Bioeng 77:186–193

    PubMed  Google Scholar 

  • Murray WD, Duff SJB, Lanthier PH, Armstrong DW, Welsh FW, Williams RE (1988) Development of biotechnological processes for the production of natural flavors and fragrances. Dev Food Sci 17:1–18

    CAS  Google Scholar 

  • Nordström K (1962) Formation of ethyl acetate in fermentation with brewer’s yeast. III. Participation of coenzyme A. J Inst Brew 68:398–407

    Google Scholar 

  • Onaca C, Kieninger M, Engesser K-H, Altenbuchner J (2007) Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700. J Bacteriol 189:3759–3767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orlando JJ, Tyndall GS (2010) The atmospheric oxidation of ethyl formate and ethyl acetate over a range of temperatures and oxygen partial pressures. Int J Chem Kinet 42:397–413

    CAS  Google Scholar 

  • Park Y-C, San K-Y, Bennett GN (2007) Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489. Appl Microbiol Biotechnol 76:349–356

    CAS  PubMed  Google Scholar 

  • Park YC, Shaffer CEH, Bennett GN (2009) Microbial formation of esters. Appl Microbiol Biotechnol 85:13–25

    CAS  PubMed  Google Scholar 

  • Parrondo J, García LA, Díaz M (2009) Nutrient balance and metabolic analysis in a Kluyveromyces marxianus fermentation with lactose-added whey. Braz J Chem Eng 26:445–456

    CAS  Google Scholar 

  • Passoth V, Fredlund E, Druvefors UÄ, Schnürer J (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6:3–13

    CAS  PubMed  Google Scholar 

  • Peddie HAB (1990) Ester formation in brewery fermentations. J Inst Brew 96:327–331

    CAS  Google Scholar 

  • Peel JL (1950) Formation of ethyl acetate by yeast. J Gen Microbiol 4:iv–v, Communication

    Google Scholar 

  • Peel JL (1951) Ester formation by yeasts. 2. Formation of ethyl acetate by washed suspensions of Hansenula anomala. Biochem J 49:62–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pesta G, Meyer-Pittroff R, Russ W (2007) Utilization of whey. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 193–207

    Google Scholar 

  • Pinheiro R, Belo I, Mota M (2002) Oxidative stress response of Kluyveromyces marxianus to hydrogen peroxide, paraquat and pressure. Appl Microbiol Biotechnol 58:842–847

    CAS  PubMed  Google Scholar 

  • Pinheiro R, Belo I, Mota M (2003) Growth and β-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure. Lett Appl Microbiol 37:438–442

    CAS  PubMed  Google Scholar 

  • Plata C, Millán C, Mauricio JC, Ortega JM (2003) Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol 20:217–224

    CAS  Google Scholar 

  • Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499

    CAS  PubMed  Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68

    CAS  Google Scholar 

  • Qureshi N, Blaschek HP (2001) Recovery of butanol from fermentation broth by gas stripping. Renew Energy 22:557–564

    CAS  Google Scholar 

  • Raimondi S, Zanni E, Amaretti A, Palleschi C, Uccelletti D, Rossi M (2013) Thermal adaptability of Kluyveromyces marxianus in recombinant protein production. Microb Cell Factories 12(34):1–7

    Google Scholar 

  • Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90:1573–1586

    CAS  PubMed  Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P (2001) Studies on acetate ester production by non-Saccharomyces wine yeasts. Int J Food Microbiol 70:283–289

    CAS  PubMed  Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P (2003) Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J Food Microbiol 86:181–188

    CAS  PubMed  Google Scholar 

  • Röttig A, Wenning L, Bröker D, Steinbüchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733

    PubMed  Google Scholar 

  • Saerens SMG, Verstrepen KJ, Thevelein JM, Delvaux FR (2008) Ethyl ester production during brewery fermentation: a review. Cerevisia 33(2):82–90

    CAS  Google Scholar 

  • Saerens SMG, Delvaux FR, Verstrepen KJ, Thevelein JM (2010) Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol 3:165–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sansonetti S, Curcio S, Calabrò V, Iorio G (2009) Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass Bioenergy 33:1687–1692

    CAS  Google Scholar 

  • Schnürer J, Jonsson A (2011) Pichia anomala J121: a 30-year overnight near success biopreservation story. Antonie Van Leeuwenhoek 99:5–12

    PubMed  Google Scholar 

  • Setlhaku M, Heitmann S, Górak A, Wichmann R (2013) Investigation of gas stripping and pervaporation for improved feasibility of two-stage butanol production process. Bioresour Technol 136:102–108

    CAS  PubMed  Google Scholar 

  • Silva-Santisteban BOY, Converti A, Filho FM (2006) Intrinsic activity of inulinase from Kluyveromyces marxianus ATCC 16045 and carbon and nitrogen balances. Food Technol Biotechnol 44:479–483

    CAS  Google Scholar 

  • Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzym Microb Technol 36:930–936

  • Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18:695–704

    CAS  Google Scholar 

  • Sumby KM, Grbin PR, Jiranek V (2010) Microbial modulation of aromatic esters in wine: current knowledge and future prospects. Food Chem 121:1–16

    CAS  Google Scholar 

  • Tabachnick J (1951) The chemistry and physiology of ester production by Hansenula anomala. Dissertation, University of California, Berkeley

  • Tabachnick J, Joslyn MA (1953a) Formation of esters by yeast. I. The production of ethyl acetate by standing surface cultures of Hansenula anomala. J Bacteriol 65:1–9

  • Tabachnick J, Joslyn MA (1953b) Formation of esters by yeast. II. Investigations with cellular suspensions of Hansenula anomala. Plant Physiol 28:681–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi T, Satō H (1911) Some new varieties of Willia anomala as aging yeast of saké. J Coll Agric 1:227–269

    Google Scholar 

  • Thomas KC, Dawson PSS (1977) Variations in the adenylate energy charge during phased growth (cell cycle) of Candida utilis under energy excess and energy-limiting growth conditions. J Bacteriol 132:36–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas KC, Dawson PSS (1978) Relationship between iron-limited growth and energy limitation during phased cultivation of Candida utilis. Can J Microbiol 24:440–447

    CAS  PubMed  Google Scholar 

  • Urit T (2012) Ethyl acetate formation by Kluyveromyces marxianus on whey. Dissertation, Dresden University of Technology, Dresden

  • Urit T, Löser C, Stukert A, Bley T (2010) Bildung von Ethylacetat durch Kluyveromyces marxianus aus Molke bei aerober batch-Kultivierung unter Spurenelemente-Limitation. Chem Ing Technik 82:1550

    Google Scholar 

  • Urit T, Löser C, Wunderlich M, Bley T (2011) Formation of ethyl acetate by Kluyveromyces marxianus on whey: studies of the ester stripping. Bioprocess Biosyst Eng 34:547–559

    CAS  PubMed  Google Scholar 

  • Urit T, Löser C, Stukert A, Bley T (2012) Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch cultivation at specific trace-element limitation. Appl Microbiol Biotechnol 96:1313–1323

    CAS  PubMed  Google Scholar 

  • Urit T, Manthey R, Bley T, Löser C (2013a) Formation of ethyl acetate by Kluyveromyces marxianus on whey: influence of aeration and inhibition of yeast growth by ethyl acetate. Eng Life Sci 13:247–260

    CAS  Google Scholar 

  • Urit T, Li M, Bley T, Löser C (2013b) Growth of Kluyveromyces marxianus and formation of ethyl acetate depending on temperature. Appl Microbiol Biotechnol 97:10359–10371

    CAS  PubMed  Google Scholar 

  • Uthoff S, Bröker D, Steinbüchel A (2009) Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2:551–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Dufour J-P, Winderickx J, Thevelein JM, Pretorius IS, Delvaux FR (2003a) Flavor-active esters: adding fruitiness to beer. J Biosci Bioeng 96:110–118

    CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour J-P, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003b) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westall S (1998) Characterisation of yeast species by their production of volatile metabolites. J Food Mycol 1:187–201

    CAS  Google Scholar 

  • Willaert R, Nedovic VA (2006) Primary beer fermentation by immobilised yeast—a review on flavour formation and control strategies. J Chem Technol Biotechnol 81:1353–1367

    CAS  Google Scholar 

  • Willetts A (1989) Ester formation from ethanol by Candida pseudotropicalis. Antonie Van Leeuwenhoek 56:175–180

    CAS  PubMed  Google Scholar 

  • Williams RE, Armstrong DW, Murray WD, Welsh FW (1988) Enzyme and whole cell production of flavor and fragrance compounds. Ann N Y Acad Sci 542:406–412

    CAS  Google Scholar 

  • Xue C, Zhao J, Liu F, Lu C, Yang S-T, Bai F-W (2013) Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresour Technol 135:396–402

    CAS  PubMed  Google Scholar 

  • Yong FM, Lee KH, Wong HA (1981) The production of ethyl acetate by soy yeast Saccharomyces rouxii NRRL Y-1096. J Food Technol 16:177–184

    CAS  Google Scholar 

  • Yoshioka K, Hashimoto N (1981) Ester formation by alcohol acetyltransferase from brewers’ yeast. Agric Biol Chem 45:2183–2190

    CAS  Google Scholar 

Download references

Declaration

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Löser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löser, C., Urit, T. & Bley, T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 98, 5397–5415 (2014). https://doi.org/10.1007/s00253-014-5765-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5765-9

Keywords

Navigation