Skip to main content
Log in

The effect of degree and timing of nitrogen limitation on lipid productivity in Chlorella vulgaris

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Improvements in lipid productivity would enhance the economic feasibility of microalgal biodiesel. In order to optimise lipid productivity, both the growth rate and lipid content of algal cells must be maximised. The lipid content of many microalgae can be enhanced through nitrogen limitation, but at the expense of biomass productivity. This suggests that a two-stage nitrogen supply strategy might improve lipid productivity. Two different nitrogen supply strategies were investigated for their effect on lipid productivity in Chlorella vulgaris. The first was an initial nitrogen-replete stage, designed to optimise biomass productivity, followed by nitrogen limitation to enhance lipid content (two-stage batch) and the second was an initial nitrogen-limited stage, designed to maximise lipid content, followed by addition of nitrogen to enhance biomass concentration (fed-batch). Volumetric lipid yield in nitrogen-limited two-stage batch and fed-batch was compared with that achieved in nitrogen-replete and nitrogen-limited batch culture. In a previous work, maximum lipid productivity in batch culture was found at an intermediate level of nitrogen limitation (starting nitrate concentration of 170 mg L−1). Overall lipid productivity was not improved by using fed-batch or two-stage culture strategies, although these strategies showed higher volumetric lipid concentrations than nitrogen-replete batch culture. The dilution of cultures prior to nitrogen deprivation led to increased lipid accumulation, indicating that the availability of light influenced the rate of lipid accumulation. However, dilution did not lead to increased lipid productivity due to the resulting lower biomass concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J Appl Phycol 7(1):65–68

    Article  CAS  Google Scholar 

  • Bold H (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76:101–108

    Article  Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Chelf P (1990) Environmental control of lipid and biomass production in two diatom species. J Appl Phycol 2(2):121–129

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 6:1146–1151

    Article  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison STL (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45(11):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Garcin C, van Hille RP, Harrison STL (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods 85(2):119–123

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of eleven microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24(5):989–1001

    Article  CAS  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison STL (2014) The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl Microbiol Biotechnol 98(5):2345–2356

    Article  CAS  PubMed  Google Scholar 

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100(17):3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Huntley ME, Redalje DG (2006) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12(4):573–608

    Article  Google Scholar 

  • Klok AJ, Martens DE, Wijffels RH, Lamers PP (2013) Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour Technol 134:233–243

    Article  CAS  PubMed  Google Scholar 

  • Langley N, Harrison STL, van Hille RP (2012) A critical evaluation of CO2 supplementation to algal systems by direct injection. Biochem Eng J 68:70–75

    Article  CAS  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lourenço S, Barbarino E, Lavín P, Lanfer Marquez U, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39(1):17–32

    Article  Google Scholar 

  • Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101(17):6797–6804

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  PubMed  Google Scholar 

  • Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100(23):5988–5995

    Article  CAS  PubMed  Google Scholar 

  • Richmond A (2004) Microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • San Pedro A, Gonzalez-Lopez CV, Acién FG, Molina-Grima E (2013) Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol 134:353–361

    Article  CAS  PubMed  Google Scholar 

  • Sheehan J, Dunahay T, Benemann JR, Roessler P (1998) A look back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from algae. Closeout report. National Renewable Energy Lab, Department of Energy, Golden, Report number NREL/TP-580-24190, dated July 1998

    Book  Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1(1):47–58

    Article  CAS  Google Scholar 

  • Su C-H, Chien L-J, Gomes J, Lin Y-S, Yu Y-K, Liou J-S, Syu R-J (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908

    Article  CAS  Google Scholar 

  • Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol 54(1):112–117

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is based upon research supported by the South African National Energy Development Institute (SANEDI), the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology, the National Research Foundation (NRF) and the Technology Innovation Agency (TIA). The financial assistance of these organisations is hereby acknowledged. Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and SANEDI, SARChI, TIA or the NRF do not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan T. L. Harrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffiths, M.J., van Hille, R.P. & Harrison, S.T.L. The effect of degree and timing of nitrogen limitation on lipid productivity in Chlorella vulgaris . Appl Microbiol Biotechnol 98, 6147–6159 (2014). https://doi.org/10.1007/s00253-014-5757-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5757-9

Keywords

Navigation