Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27(2–3):215–237
CAS
PubMed
Article
Google Scholar
Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41(1):1–20
CAS
PubMed Central
PubMed
Article
Google Scholar
Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508
CAS
PubMed
Article
Google Scholar
Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A (2005) Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 253(1):125–131
CAS
PubMed
Article
Google Scholar
Berlutti F, Morea C, Battistoni A, Sarli S, Cipriani P, Superti F, Ammendolia MG, Valenti P (2005) Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol 18(4):661–670
CAS
PubMed
Google Scholar
Braun V, Killmann H (1999) Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24(3):104–109
CAS
PubMed
Article
Google Scholar
Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86(6):1637–1645
CAS
PubMed
Article
Google Scholar
Cornelis P, Aendekerk S (2004) A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150(Pt 4):752–756
CAS
PubMed
Article
Google Scholar
Cornelissen CN, Sparling PF (1994) Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol 14(5):843–850
CAS
PubMed
Article
Google Scholar
Coulanges V, Andre P, Ziegler O, Buchheit L, Vidon DJ (1997) Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect Immun 65(7):2778–2785
CAS
PubMed Central
PubMed
Google Scholar
Deziel E, Lepine F, Milot S, Villemur R (2003) RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149(Pt 8):2005–2013
CAS
PubMed
Article
Google Scholar
Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101(5):1339–1344
CAS
PubMed Central
PubMed
Article
Google Scholar
Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50(1):29–43
CAS
PubMed
Article
Google Scholar
Frangipani, E., D. Visaggio, S. Heeb, V. Kaever, M. Camara, P. Visca and F. Imperi (2013). The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol
Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192(12):2973–2980
CAS
PubMed Central
PubMed
Article
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19
PubMed Central
PubMed
Article
Google Scholar
Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47(8):1207–1219
CAS
Article
Google Scholar
Icks A, Trautner C, Haastert B, Berger M, Giani G (1997) Blindness due to diabetes: population-based age- and sex-specific incidence rates. Diabet Med 14(7):571–575
CAS
PubMed
Article
Google Scholar
Kayama S, Murakami K, Ono T, Ushimaru M, Yamamoto A, Hirota K, Miyake Y (2009) The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol Lett 298(2):184–192
CAS
PubMed
Article
Google Scholar
Kreamer NN, Wilks JC, Marlow JJ, Coleman ML, Newman DK (2012) BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa. J Bacteriol 194(5):1195–1204
CAS
PubMed Central
PubMed
Article
Google Scholar
Lee KM, Yoon MY, Park Y, Lee JH, Yoon SS (2011) Anaerobiosis-induced loss of cytotoxicity is due to inactivation of quorum sensing in Pseudomonas aeruginosa. Infec Immun 79(7):2792–2800
CAS
Article
Google Scholar
Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187(1):37–44
CAS
PubMed Central
PubMed
Article
Google Scholar
Medina G, Juarez K, Diaz R, Soberon-Chavez G (2003a) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149(Pt 11):3073–3081
CAS
PubMed
Article
Google Scholar
Medina G, Juarez K, Soberon-Chavez G (2003b) The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 185(1):377–380
CAS
PubMed Central
PubMed
Article
Google Scholar
Medina G, Juarez K, Valderrama B, Soberon-Chavez G (2003c) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185(20):5976–5983
CAS
PubMed Central
PubMed
Article
Google Scholar
Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264
PubMed
Article
Google Scholar
Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87(1):167–174
PubMed
Article
Google Scholar
Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12(7):789–796
CAS
PubMed
Article
Google Scholar
Neilson JW, Zhang L, Veres-Schalnat TA, Chandler KB, Neilson CH, Crispin JD, Pemberton JE, Maier RM (2010) Cadmium effects on transcriptional expression of rhlB/rhlC genes and congener distribution of monorhamnolipid and dirhamnolipid in Pseudomonas aeruginosa IGB83. Appl Microbiol Biotechnol 88(4):953–963
CAS
PubMed
Article
Google Scholar
Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45(5):1277–1287
CAS
PubMed
Article
Google Scholar
Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190(2):662–671
CAS
PubMed Central
PubMed
Article
Google Scholar
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45
CAS
PubMed Central
PubMed
Article
Google Scholar
Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32(1):38–55
CAS
PubMed
Article
Google Scholar
Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40(3):708–718
CAS
PubMed
Article
Google Scholar
Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Progr 18(6):1277–1281
CAS
Article
Google Scholar
Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52(Pt 5):403–408
CAS
PubMed
Article
Google Scholar
Schmidberger A, Henkel M, Hausmann R, Schwartz T (2013) Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol 97(13):5779–5791
CAS
PubMed
Article
Google Scholar
Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296(2–3):73–81
CAS
PubMed
Article
Google Scholar
Schwartz T, Walter S, Marten SM, Kirschhofer F, Nusser M, Obst U (2007) Use of quantitative real-time RT-PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa. Anal Bioanal Chem 387(2):513–521
CAS
PubMed
Article
Google Scholar
Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. Plos Pathog 6(8):e1000949
PubMed Central
PubMed
Article
Google Scholar
Soberon-Chavez G, Lepine F, Deziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725
CAS
PubMed
Article
Google Scholar
Upritchard HG, Yang J, Bremer PJ, Lamont IL, McQuillan AJ (2007) Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals. Langmuir 23(13):7189–7195
CAS
PubMed
Article
Google Scholar
Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34(3):399–413
CAS
PubMed
Article
Google Scholar
Viducic D, Ono T, Murakami K, Katakami M, Susilowati H, Miyake Y (2007) rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems. Antimicrob Agents Ch 51(4):1455–1462
CAS
Article
Google Scholar
Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45(5):1177–1190
CAS
PubMed
Article
Google Scholar
Wolz C, Lehmann R, Vasil ML, Bischoff R, Doring G (1994) A new extracellular protein of Pseudomonas aeruginosa PA103 regulated by regA. Microbiology 140(Pt 7):1755–1761
CAS
PubMed
Article
Google Scholar
Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1318–1328
CAS
PubMed
Article
Google Scholar