Skip to main content

Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1

Abstract

Bioprocesses based on sustainable resources and rhamnolipids in particular have become increasingly attractive in recent years. These surface-active glycolipids with various chemical and biological properties have diverse biotechnological applications and are naturally produced by Pseudomonas aeruginosa. Their production, however, is tightly governed by a complex growth-dependent regulatory network, one of the major obstacles in the way to upscale production. P. aeruginosa PAO1 was grown in shake flask cultures using varying concentrations of ferric iron. Gene expression was assessed using quantitative PCR. A strong increase in relative expression of the genes for rhamnolipid synthesis, rhlA and rhlC, as well as the genes of the pqs quorum sensing regulon was observed under iron-limiting conditions. Iron repletion on the other hand caused a down-regulation of those genes. Furthermore, gene expression of different iron regulation-related factors, i.e. pvdS, fur and bqsS, was increased in response to iron limitation. Ensuing from these results, a batch cultivation using production medium without any addition of iron was conducted. Both biomass formation and specific growth rates were not impaired compared to normal cultivation conditions. Expression of rhlA, rhlC and pvdS, as well as the gene for the 3-oxo-C12-HSL synthetase, lasI, increased until late stationary growth phase. After this time point, their expression steadily decreased. Expression of the C4-HSL synthetase gene, rhlI, on the other hand, was found to be highly increased during the entire process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27(2–3):215–237

    CAS  PubMed  Article  Google Scholar 

  • Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41(1):1–20

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508

    CAS  PubMed  Article  Google Scholar 

  • Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A (2005) Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 253(1):125–131

    CAS  PubMed  Article  Google Scholar 

  • Berlutti F, Morea C, Battistoni A, Sarli S, Cipriani P, Superti F, Ammendolia MG, Valenti P (2005) Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol 18(4):661–670

    CAS  PubMed  Google Scholar 

  • Braun V, Killmann H (1999) Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24(3):104–109

    CAS  PubMed  Article  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86(6):1637–1645

    CAS  PubMed  Article  Google Scholar 

  • Cornelis P, Aendekerk S (2004) A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150(Pt 4):752–756

    CAS  PubMed  Article  Google Scholar 

  • Cornelissen CN, Sparling PF (1994) Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol 14(5):843–850

    CAS  PubMed  Article  Google Scholar 

  • Coulanges V, Andre P, Ziegler O, Buchheit L, Vidon DJ (1997) Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect Immun 65(7):2778–2785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deziel E, Lepine F, Milot S, Villemur R (2003) RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149(Pt 8):2005–2013

    CAS  PubMed  Article  Google Scholar 

  • Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101(5):1339–1344

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50(1):29–43

    CAS  PubMed  Article  Google Scholar 

  • Frangipani, E., D. Visaggio, S. Heeb, V. Kaever, M. Camara, P. Visca and F. Imperi (2013). The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol

  • Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192(12):2973–2980

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19

    PubMed Central  PubMed  Article  Google Scholar 

  • Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47(8):1207–1219

    CAS  Article  Google Scholar 

  • Icks A, Trautner C, Haastert B, Berger M, Giani G (1997) Blindness due to diabetes: population-based age- and sex-specific incidence rates. Diabet Med 14(7):571–575

    CAS  PubMed  Article  Google Scholar 

  • Kayama S, Murakami K, Ono T, Ushimaru M, Yamamoto A, Hirota K, Miyake Y (2009) The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol Lett 298(2):184–192

    CAS  PubMed  Article  Google Scholar 

  • Kreamer NN, Wilks JC, Marlow JJ, Coleman ML, Newman DK (2012) BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa. J Bacteriol 194(5):1195–1204

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Lee KM, Yoon MY, Park Y, Lee JH, Yoon SS (2011) Anaerobiosis-induced loss of cytotoxicity is due to inactivation of quorum sensing in Pseudomonas aeruginosa. Infec Immun 79(7):2792–2800

    CAS  Article  Google Scholar 

  • Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187(1):37–44

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Medina G, Juarez K, Diaz R, Soberon-Chavez G (2003a) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149(Pt 11):3073–3081

    CAS  PubMed  Article  Google Scholar 

  • Medina G, Juarez K, Soberon-Chavez G (2003b) The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 185(1):377–380

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Medina G, Juarez K, Valderrama B, Soberon-Chavez G (2003c) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185(20):5976–5983

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264

    PubMed  Article  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87(1):167–174

    PubMed  Article  Google Scholar 

  • Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12(7):789–796

    CAS  PubMed  Article  Google Scholar 

  • Neilson JW, Zhang L, Veres-Schalnat TA, Chandler KB, Neilson CH, Crispin JD, Pemberton JE, Maier RM (2010) Cadmium effects on transcriptional expression of rhlB/rhlC genes and congener distribution of monorhamnolipid and dirhamnolipid in Pseudomonas aeruginosa IGB83. Appl Microbiol Biotechnol 88(4):953–963

    CAS  PubMed  Article  Google Scholar 

  • Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45(5):1277–1287

    CAS  PubMed  Article  Google Scholar 

  • Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190(2):662–671

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32(1):38–55

    CAS  PubMed  Article  Google Scholar 

  • Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40(3):708–718

    CAS  PubMed  Article  Google Scholar 

  • Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Progr 18(6):1277–1281

    CAS  Article  Google Scholar 

  • Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52(Pt 5):403–408

    CAS  PubMed  Article  Google Scholar 

  • Schmidberger A, Henkel M, Hausmann R, Schwartz T (2013) Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol 97(13):5779–5791

    CAS  PubMed  Article  Google Scholar 

  • Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296(2–3):73–81

    CAS  PubMed  Article  Google Scholar 

  • Schwartz T, Walter S, Marten SM, Kirschhofer F, Nusser M, Obst U (2007) Use of quantitative real-time RT-PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa. Anal Bioanal Chem 387(2):513–521

    CAS  PubMed  Article  Google Scholar 

  • Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. Plos Pathog 6(8):e1000949

    PubMed Central  PubMed  Article  Google Scholar 

  • Soberon-Chavez G, Lepine F, Deziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725

    CAS  PubMed  Article  Google Scholar 

  • Upritchard HG, Yang J, Bremer PJ, Lamont IL, McQuillan AJ (2007) Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals. Langmuir 23(13):7189–7195

    CAS  PubMed  Article  Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34(3):399–413

    CAS  PubMed  Article  Google Scholar 

  • Viducic D, Ono T, Murakami K, Katakami M, Susilowati H, Miyake Y (2007) rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems. Antimicrob Agents Ch 51(4):1455–1462

    CAS  Article  Google Scholar 

  • Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45(5):1177–1190

    CAS  PubMed  Article  Google Scholar 

  • Wolz C, Lehmann R, Vasil ML, Bischoff R, Doring G (1994) A new extracellular protein of Pseudomonas aeruginosa PA103 regulated by regA. Microbiology 140(Pt 7):1755–1761

    CAS  PubMed  Article  Google Scholar 

  • Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1318–1328

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work is financed by the Baden-Württemberg Stiftung as part of the Environmental Technology Research Programme. Furthermore, the work for rhamnolipid quantification of Michael Nusser from the Karlsruhe Institute of Technology (KIT) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anke Schmidberger or Thomas Schwartz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 205 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmidberger, A., Henkel, M., Hausmann, R. et al. Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 98, 6725–6737 (2014). https://doi.org/10.1007/s00253-014-5747-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5747-y

Keywords

  • Pseudomonas aeruginosa PAO1
  • Rhamnolipid
  • Biosurfactant
  • Gene expression
  • Iron starvation
  • Quorum sensing