Skip to main content
Log in

Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi:10.1186/1471-2164-9-75

    Article  PubMed Central  PubMed  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408. doi:10.1038/nbt1029

    Article  CAS  PubMed  Google Scholar 

  • Beutler E, Kuhl W (1972) Purification and properties of human alpha-galactosidases. J Biol Chem 247(22):7195–7200

    CAS  PubMed  Google Scholar 

  • Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103(15):5869–5874. doi:10.1073/pnas.0510098103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48(6):463–465. doi:10.2144/000113418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bujard H, Gentz R, Lanzer M, Stueber D, Mueller M, Ibrahimi I, Haeuptle MT, Dobberstein B (1987) A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol 155:416–433

    Article  CAS  PubMed  Google Scholar 

  • Chain PS, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C, Cole JR, Ding Y, Dugan S, Field D, Garrity GM, Gibbs R, Graves T, Han CS, Harrison SH, Highlander S, Hugenholtz P, Khouri HM, Kodira CD, Kolker E, Kyrpides NC, Lang D, Lapidus A, Malfatti SA, Markowitz V, Metha T, Nelson KE, Parkhill J, Pitluck S, Qin X, Read TD, Schmutz J, Sozhamannan S, Sterk P, Strausberg RL, Sutton G, Thomson NR, Tiedje JM, Weinstock G, Wollam A, Detter JC (2009) Genomics. Genome project standards in a new era of sequencing. Science 326(5950):236–237. doi:10.1126/science.1180614

    Article  CAS  PubMed  Google Scholar 

  • Chen ZF, Wojcik SF, Welker NE (1986) Genetic analysis of Bacillus stearothermophilus by protoplast fusion. J Bacteriol 165(3):994–1001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2011) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62(Pt 7):1470–1485. doi:10.1099/ijs.0.030346-0

    Article  PubMed  Google Scholar 

  • Couñago R, Shamoo Y (2005) Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability. Extremophiles 9(2):135–144. doi:10.1007/s00792-004-0428-x

    Article  PubMed  Google Scholar 

  • Couñago R, Chen S, Shamoo Y (2006) In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol Cell 22(4):441–449. doi:10.1016/j.molcel.2006.04.012

    Article  PubMed  Google Scholar 

  • de Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80(1):21–25

    Article  PubMed Central  PubMed  Google Scholar 

  • De Rossi E, Brigidi P, Welker NE, Riccardi G, Matteuzzi D (1994) New shuttle vector for cloning in Bacillus stearothermophilus. Res Microbiol 145(8):579–583

    Article  CAS  PubMed  Google Scholar 

  • Deloger M, El Karoui M, Petit MA (2009) A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 191(1):91–99. doi:10.1128/JB.01202-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104(13):5602–5607. doi:10.1073/pnas.0609650104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fridjonsson O, Watzlawick H, Gehweiler A, Mattes R (1999) Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization. FEMS Microbiol Lett 176(1):147–153

    CAS  PubMed  Google Scholar 

  • Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95(22):12809–12813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goto K, Omura T, Hara Y, Sadaie Y (2000) Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267. doi:10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R (2000) Stability and stabilization of globular proteins in solution. J Biotechnol 79(3):193–203

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12. doi:10.1186/gb-2004-5-2-r12

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y, Ferenci T (1997) Gene organisation and regulatory sequences in the sucrose utilisation cluster of Bacillus stearothermophilus NUB36. Gene 195(2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28(1):292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702. doi:10.1093/nar/gki866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1):79–88. doi:10.1038/nbt1172

    Article  CAS  PubMed  Google Scholar 

  • Pena MI, Davlieva M, Bennett MR, Olson JS, Shamoo Y (2010) Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection. Mol Syst Biol 6:387. doi:10.1038/msb.2010.43

    Article  PubMed Central  PubMed  Google Scholar 

  • Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi:10.1186/1754-1611-2-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123. doi:10.1101/gr.089532.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Studholme DJ, Jackson RA, Leak DJ (1999) Phylogenetic analysis of transformable strains of thermophilic Bacillus species. FEMS Microbiol Lett 172(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Yoshida K (2012) Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids. J Microbiol Biotechnol 22(9):1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Takami H, Nishi S, Lu J, Shimamura S, Takaki Y (2004a) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8(5):351–356. doi:10.1007/s00792-004-0394-3

    Article  CAS  PubMed  Google Scholar 

  • Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004b) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32(21):6292–6303. doi:10.1093/nar/gkh970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talbot G, Sygusch J (1990) Purification and characterization of thermostable beta-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol 56(11):3505–3510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor MP, Esteban CD, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60(1):45–52. doi:10.1016/j.plasmid.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  • Vallier H, Welker NE (1990) Genetic map of the Bacillus stearothermophilus NUB36 chromosome. J Bacteriol 172(2):793–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng. doi:10.1146/annurev-chembioeng-061312-103312

    PubMed  Google Scholar 

  • Wu LJ, Welker NE (1989) Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA. J Gen Microbiol 135(5):1315–1324

    CAS  PubMed  Google Scholar 

  • Wu L, Welker NE (1991) Temperature-induced protein synthesis in Bacillus stearothermophilus NUB36. J Bacteriol 173(15):4889–4892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yansura DG, Henner DJ (1984) Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A 81(2):439–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeigler DR (2005) Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol 55(Pt 3):1171–1179. doi:10.1099/ijs.0.63452-0

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Caspers MP, Abee T, Siezen RJ, Kort R (2012) Complete genome sequence of Geobacillus thermoglucosidans TNO-09.020, a thermophilic sporeformer associated with a dairy-processing environment. J Bacteriol 194(15):4118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Bacillus Genetic Stock Center for GsNUB3621, the pNW33N plasmid, and their protocols. We also thank the Emory Integrated Genomics Core for their service and Paul Doetsch for the use of his spectrofluorimeter. This work was supported by the National Institute of General Medicine at the National Institutes for Health. KB and IM were supported by R01 GM086824 and KB was also supported by 5T32GM008490-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Matsumura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 2.41 mb)

ESM 2

(XLSX 32.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchard, K., Robic, S. & Matsumura, I. Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering. Appl Microbiol Biotechnol 98, 6715–6723 (2014). https://doi.org/10.1007/s00253-014-5746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5746-z

Keywords

Navigation