Skip to main content
Log in

Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolytica WSH-Z06

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yarrowia lipolytica WSH-Z06 harbours a promising capability to oversynthesize α-ketoglutarate (α-KG). Its wide utilization is hampered by the formation of high concentrations of pyruvate. In this study, a metabolic strategy for the overexpression of the α and β subunits of pyruvate dehydrogenase E1, E2 and E3 components was designed to reduce the accumulation of pyruvate. Elevated expression level of α subunit of E1 component improved the α-KG production and reduced the pyruvate accumulation. Due to a reduction in the acetyl-CoA supply, neither the growth of cells nor the synthesis of α-KG was restrained by the overexpression of β subunit of E1, E2 and E3 components. Furthermore, via the overexpression of these thiamine pyrophosphate (TPP)-binding subunits, the dependency of pyruvate dehydrogenase on thiamine was diminished in strains T1 and T2, in which α and β subunits of E1 component were separately overexpressed. In these two recombinant strains, the accumulation of pyruvate was insensitive to variations in exogenous thiamine. The results suggest that α-KG production can be enhanced by altering the dependence on TPP of pyruvate dehydrogenase and that the competition for the cofactor can be switched to ketoglutarate dehydrogenase via separate overexpression of the TPP-binding subunits of pyruvate dehydrogenase. The results presented here provided new clue to improve α-KG production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balakrishnan A, Nemeria NS, Chakraborty S, Kakalis L, Jordan F (2012) Determination of pre-steady-state rate constants on the Escherichia coli pyruvate dehydrogenase complex reveals that loop movement controls the rate-limiting step. J Am Chem Soc 134(45):18644–18655. doi:10.1021/ja3062375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77(22):7905–7914. doi:10.1128/aem.05763-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bunik VI, Degtyarev D (2008) Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins. Proteins 71(2):874–890. doi:10.1002/prot.21766

    Article  CAS  PubMed  Google Scholar 

  • Byrne KL, Meacock PA (2001) Thiamin auxotrophy in yeast through altered cofactor dependence of the enzyme acetohydroxyacid synthase. Microbiology 147:2389–2398

    CAS  PubMed  Google Scholar 

  • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54. doi:10.1016/j.ymben.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  • Chernyavskaya OG, Shishkanova NV, Il’chenko AP, Finogenova TV (2000) Synthesis of α-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol. Appl Microbiol Biotechnol 53(2):152–158. doi:10.1007/s002530050002

    Article  CAS  PubMed  Google Scholar 

  • Ciszak EM, Korotchkina LG, Dominiak PM, Sidhu S, Patel MS (2003) Structural basis for flip-flop action of thiamin pyrophosphate-dependent enzymes revealed by human pyruvate dehydrogenase. J Biol Chem 278(23):21240–21246. doi:10.1074/jbc.M300339200

    Article  CAS  PubMed  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543. doi:10.1016/j.femsyr.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Forster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77(4):861–869. doi:10.1007/s00253-007-1205-4

    Article  PubMed  Google Scholar 

  • Holz M, Förster A, Mauersberger S, Barth G (2009) Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 81(6):1087–1096. doi:10.1007/s00253-008-1725-6

    Article  CAS  PubMed  Google Scholar 

  • Lessard IA, Perham RN (1994) Expression in Escherichia coli of genes encoding the E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex of Bacillus stearothermophilus and assembly of a functional E1 component in vitro. J Biol Chem 269(14):10378–10383

    CAS  PubMed  Google Scholar 

  • Lessard IAD, Domingo GJ, Borges A, Perham RN (1998) Expression of genes encoding the E2 and E3 components of the Bacillus stearothermophilus pyruvate dehydrogenase complex and the stoichiometry of subunit interaction in assembly in vitro. Eur J Biochem 258(2):491–501. doi:10.1046/j.1432-1327.1998.2580491.x

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li Y, Zhu Y, Du G, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng 9(1):21–29. doi:10.1016/j.ymben.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  • Madzak C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109(1–2):63–81. doi:10.1016/j.jbiotec.2003.10.027

    Article  CAS  PubMed  Google Scholar 

  • Mansour S, Bailly J, Delettre J, Bonnarme P (2009) A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica. Proteomics 9(20):4714–4725. doi:10.1002/pmic.200900161

    Article  CAS  PubMed  Google Scholar 

  • Morgunov IG, Kamzolova SV, Perevoznikova OA, Shishkanova NV, Finogenova TV (2004) Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica. Process Biochem 39(11):1469–1474. doi:10.1016/S0032-9592(03)00259-0

    Article  CAS  Google Scholar 

  • Nicaud JM (2012) Yarrowia lipolytica. Yeast 29(10):409–418. doi:10.1002/yea.2921

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase genes in Yarrowia lipolytica. Appl Microbiol Biotechnol 95(4):905–917. doi:10.1007/s00253-012-4085-1

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92(4):689–695. doi:10.1007/s00253-011-3597-4

    Article  CAS  PubMed  Google Scholar 

  • Ren LJ, Huang H, Xiao AH, Lian M, Jin LJ, Ji XJ (2009) Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst Eng 32(6):837–843. doi:10.1007/s00449-009-0310-4

    Article  CAS  PubMed  Google Scholar 

  • Russell GC, Guest JR (1990) Overexpression of restructured pyruvate dehydrogenase complexes and site-directed mutagenesis of a potential active-site histidine residue. Biochem J 269(2):443–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasing JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160–168. doi:10.1016/j.ymben.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  • Soo P-C, Horng Y-T, Lai M-J, Wei J-R, Hsieh S-C, Chang Y-L, Tsai Y-H, Lai H-C (2007) Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity. J Bacteriol 189(1):109–118. doi:10.1128/jb.00710-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strumilo S, Czerniecki J, Dobrzyn P (1999) Regulatory effect of thiamin pyrophosphate on pig heart pyruvate dehydrogenase complex. Biochem Biophys Res Commun 256(2):341–345. doi:10.1006/bbrc.1999.0321

    Article  CAS  PubMed  Google Scholar 

  • Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(7):2402–2407. doi:10.1073/pnas.0607469104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu SX, Letchworth GJ (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36(1):152–154

    CAS  PubMed  Google Scholar 

  • Xu G, Hua Q, Duan N, Liu L, Chen J (2012) Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Yeast 29(6):209–217. doi:10.1002/yea.2902

    Article  PubMed  Google Scholar 

  • Yu ZZ, Du GC, Zhou JW, Chen J (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour Technol 114:597–602. doi:10.1016/j.biortech.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  • Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107(4):673–682. doi:10.1002/bit.22859

    Article  CAS  PubMed  Google Scholar 

  • Zhou JW, Yin XX, Madzak C, Du GC, Chen J (2012) Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J Biotechnol 161(3):257–264. doi:10.1016/j.jbiotec.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  • Zhou JW, Zhou HY, Du GC, Liu LM, Chen J (2010) Screening of a thiamine-auxotrophic yeast for α-ketoglutaric acid overproduction. Lett Appl Microbiol 51(3):264–271. doi:10.1111/j.1472-765X.2010.02889.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31130043, 21276109), the Natural Science Foundation of Jiangsu Province (BK2011004), the Author of National Excellent Doctoral Dissertation of PR China (FANEDD, 2011046), the Program for New Century Excellent Talents in the University (NCET-12-0876), the Fundamental Research Funds for the Central Universities (JUSRP51307A) and the 111 Project (111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingwen Zhou or Jian Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Madzak, C., Du, G. et al. Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolytica WSH-Z06. Appl Microbiol Biotechnol 98, 7003–7012 (2014). https://doi.org/10.1007/s00253-014-5745-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5745-0

Keywords

Navigation