Skip to main content
Log in

Signal peptide of cellulase

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulase is an enzyme playing a crucial role in biotechnology industries ranging from textile to biofuel because of tremendous amount of cellulose produced in plant. In order to improve cellulase productivity, huge resource has been spent in search for good cellulases from microorganism in remote areas and in creation of ideal cellulase by engineering. However, not much attention is given to the secretion of cellulases from cell into extracellular space, where a cellulase plays its enzymatic role. In this minireview, the signal peptides, which lead secreted proteins to specific secretion systems and scatter in literature, are reviewed. The patterns of signal peptides are checked against 4,101 cellulases documented in UniProtKB, the largest protein database in the world, to determine how these cellulases are secreted. Simultaneous review on both literature and cellulases from the database not only provides updated knowledge on signal peptides but also indicates the gap in our research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen C (2003) Channel-tunnels, outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. Rev Physiol Biochem Pharmacol 147:122–165

    CAS  PubMed  Google Scholar 

  • Anderson DM, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278:1140–1143

    CAS  PubMed  Google Scholar 

  • Arnau J, Hjerl-Hansen E, Israelsen H (1997) Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl Environ Microbiol 48:331–338

    CAS  Google Scholar 

  • Baines AC, Zhang B (2007) Receptor-mediated protein transport in the early secretory pathway. Trends Biochem Sci 32:381–388

    CAS  PubMed  Google Scholar 

  • Barlowe C (2003) Signals for COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol 13:295–300

    CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    PubMed  Google Scholar 

  • Bi X, Corpina RA, Goldberg J (2002) Structure of the Sec23/24-Sarl pre-budding complex of the COPII vesicle coat. Nature 419:271–277

    CAS  PubMed  Google Scholar 

  • Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8

    CAS  PubMed  Google Scholar 

  • Blocker A, Komoriya K, Aizawa S (2003) Type III secretion systems and bacterial flagella, insights into their function from structural similarities. Proc Natl Acad Sci U S A 100:3027–3030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis A (2002) Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 148:3335–3345

    CAS  PubMed  Google Scholar 

  • Bolhuis A (2004) The archaeal Sec-dependent protein translocation pathway. Philos Trans R Soc Lond B Biol Sci 359:919–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis A, Broekhuizen CP, Sorokin A, Van Roosmalen ML, Venema G, Bron S, Quax WJ, Van Dijl JM (1998) SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 273:21217–21224

    CAS  PubMed  Google Scholar 

  • Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104

    PubMed  PubMed Central  Google Scholar 

  • Brunder W, Schmidt H, Karch H (1997) EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 24:767–778

    CAS  PubMed  Google Scholar 

  • Buttner D, Bonas U (2002) Port of entry, the type III secretion translocon. Trends Microbiol 10:186–192

    CAS  PubMed  Google Scholar 

  • Cascales E (2008) The type VI secretion tool kit. EMBO Rep 9:735–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS (2006) C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:1632–1636

    PubMed  Google Scholar 

  • Champion PA, Champion MM, Manzanillo P, Cox JS (2009) ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 73:950–962

    PubMed  PubMed Central  Google Scholar 

  • Chatel JM, Langella P, Adel-Patient K, Commissaire J, Wal JM, Corthier G (2001) Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine betalactoglobulin. Clin Diagn Lab Immunol 8:545–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, VanValkenburgh C, Liang H, Fang H, Green N (2001) Signal peptidase and oligosaccharyltransferase interact in a sequential and dependent manner within the endoplasmic reticulum. J Biol Chem 276:2411–2416

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhang Y, Yin Y, Gao G, Li S, Jiang Y, Gu X, Luo J (2005) SPD—a web-based secreted protein database. Nucleic Acids Res 33:D169–D173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Lei L, Lu C, Flores R, DeLisa MP, Roberts TC, Romesberg FE, Zhong G (2010) Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. Microbiology 156:3031–3040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ (2001) Type IV secretion, intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ, Vogel JP (2000) Bacterial type IV secretion, conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–360

    CAS  PubMed  Google Scholar 

  • Ciufo LF, Boyd A (2000) Identification of a lumenal sequence specifying the assembly of Emp24p into p24 com plexes in the yeast secretory pathway. J Biol Chem 275:8382–8388

    CAS  PubMed  Google Scholar 

  • Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1631

    CAS  PubMed  Google Scholar 

  • Cunha ES, Hatem CL, Barrick D (2013) Insertion of endocellulase catalytic domains into thermostable consensus ankyrin scaffolds: effects on stability and cellulolytic activity. Appl Environ Microbiol 79:6684–6696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM, Luirink J, Bitter W (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 109:11342–11347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels R, Kurowski B, Johnson AE, Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11:79–90

    CAS  PubMed  Google Scholar 

  • Desvaux M, Parham MJ, Henderson IR (2004) Type V protein secretion: simplicity gone awry. Curr Issues Mol Biol 6:111–124

    CAS  PubMed  Google Scholar 

  • Desvaux M, Hébraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145

    CAS  PubMed  Google Scholar 

  • Devillers-Thiery A, Kindt T, Scheele G, Blobel G (1975) Homology in amino-terminal sequence of precursors to pancreatic secretory proteins. Proc Natl Acad Sci U S A 72:5016–5020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Atmakuri K, Christie PJ (2003) The outs and ins of bacterial type IV secretion substrates. Trends Microbiol 11:527–535

    CAS  PubMed  Google Scholar 

  • Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T (1998) gp251/emp24/p24 protein family members of the cis Golgi network bind both COP I and II coatomer. J Cell Biol 140:751–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doms RW, Keller DS, Helenius A, Balch WE (1987) Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J Cell Biol 105:1957–1969

    CAS  PubMed  Google Scholar 

  • Eichler J (2000) Archaeal protein translocation: crossing membranes in the third domain of life. Eur J Biochem 267:3402–3412

    CAS  PubMed  Google Scholar 

  • Eichler J, Moll R (2001) The signal recognition particle of Archaea. Trends Microbiol 9:130–136

    CAS  PubMed  Google Scholar 

  • Enouf V, Langella P, Commissaire J, Cohen J, Corthier G (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fagerlund A, Lindbäck T, Granum PE (2010) Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol 10:304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fekkes P, Driessen AJ (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedler K, Veit M, Stamnes MA, Rothman JE (1996) Bimodal interaction of coatomer with the p24 family of puta tive cargo receptors. Science 273:1396–1399

    CAS  PubMed  Google Scholar 

  • Filloux A, Hachani A, Bleves S (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154:1570–1583

    CAS  PubMed  Google Scholar 

  • Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, Bloom BR, Rubin EJ (2005) Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A 102:10676–10681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeng S, Scherer S, Neve H, Loessner MJ (2000) Gene cloning and expression of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66:2951–2958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    CAS  PubMed  Google Scholar 

  • Giraudo CG, Maccioni HJ (2003) Endoplasmic reticu lum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sarl. Mol Biol Cell 14:3753–3766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielmini J, de la Cruz F, Rocha EP (2013) Evolution of conjugation and type IV secretion systems. Mol Biol Evol 30:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall J, Hazlewood GP, Surani MA, Hirst BH, Gilbert HJ (1990) Eukaryotic and prokaryotic signal peptides direct secretion of a bacterial endoglucanase by mammalian cells. J Biol Chem 265:19996–19999

    CAS  PubMed  Google Scholar 

  • Harmsen MM, Bruyne MI, Raue HA, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46:365–370

    CAS  PubMed  Google Scholar 

  • Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape, structure and function of the autotransporter proteins. Trends Microbiol 6:370–378

    CAS  PubMed  Google Scholar 

  • Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang W, Merz AJ, Goodlett DR, Mougous JD (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hueck CJ (1998) Tyep III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irihimovitch V, Ring G, Elkayam T, Konrad Z, Eichler J (2003) Isolation of fusion proteins containing SecY and SecE, components of the protein translocation complex from the halophilic archaeon Haloferax volcanii. Extremophiles 7:71–77

    CAS  PubMed  Google Scholar 

  • Jabbour D, Borrusch MS, Banerjee G, Walton JD (2013) Enhancement of fermentable sugar yields by α-xylosidase supplementation of commercial cellulases. Biotechnol Biofuels 6:58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen D, Schekman R (2011) COPII-mediated vesicle formation at a glance. J Cell Sci 124:1–4

    CAS  PubMed  Google Scholar 

  • Jongbloed JDH, Martin U, Antelmann H, Hecker M, Tjalsma H, Venema G, Bron S, van Dijl JM, Müller J (2000) TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 275:41350–41357

    CAS  PubMed  Google Scholar 

  • Jongbloed JDH, Antelmann H, Hecker M, Nijland R, Pries F, Koski P, Quax WJ, Bron S, van Dijl JM, Braun PG (2002) Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277:44068–44078

    CAS  PubMed  Google Scholar 

  • Kappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP (1997) The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J Biol Chem 272:31801–31808

    CAS  PubMed  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    CAS  PubMed  Google Scholar 

  • Kornacker MG, Newton A (1994) Information essential for cellcycle-dependent secretion of the 591-residue Caulobacter hook protein is confined to a 21-amino-acid sequence near the N-terminus. Mol Microbiol 14:73–85

    CAS  PubMed  Google Scholar 

  • Kurihara T, Hamamoto S, Gimeno RE, Kaiser CA, Schekman R, Yoshihisa T (2000) Sec24p and Isslp function interchangeably in transport vesicle formation from the endo plasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell 11:983–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Loir Y, Gruss A, Ehrlich SD, Langella P (1998) A nine-residuesynthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180:1895–1903

    PubMed  PubMed Central  Google Scholar 

  • Le Loir Y, Nouaille S, Commissaire J, Brétigny L, Gruss A, Langella P (2001) Signal Peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67:4119–4127

    PubMed  PubMed Central  Google Scholar 

  • Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    CAS  PubMed  Google Scholar 

  • Leversen NA, de Souza GA, Målen H, Prasad S, Jonassen I, Wiker HG (2009) Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods. Microbiology 155:2375–2383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li PJ, Beckwith J, Inouye H (1988) Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. Proc Natl Acad Sci U S A 85:7685–7689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lory S (1994) Leader peptidase of type IV prepilins and related proteins. In: von Heijne G (ed) Signal Peptidases. R. G. Landes Co., Austin, Texas, pp 17–29

    Google Scholar 

  • Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY (2001) Role of ER export signals in controlling surface potassium channel numbers. Science 291:316–319

    CAS  PubMed  Google Scholar 

  • Maltz M, Graf J (2011) The type II secretion system is essential for erythrocyte lysis and gut colonization by the leech digestive tract symbiont Aeromonas veronii. Appl Environ Microbiol 77:597–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzioch M, Henthorn DC, Herrmann JM, Wilson R, Thomas DY, Bergeron JJ, Solari RC, Rowley A (1999) Erplp and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol Biol Cell 10:1923–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller E, Antonny B, Hamamoto S, Schekman R (2002) Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21:6105–6113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure cap ture of diverse membrane proteins into transport vesicles. Cell 114:497–509

    CAS  PubMed  Google Scholar 

  • Mossessova E, Bickford LC, Goldberg J (2003) SNARE selectivity of the COPII coat. Cell 114:483–495

    CAS  PubMed  Google Scholar 

  • Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonĕz CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano MM, Zuber P (1990) Molecular biology of antibiotic production in Bacillus. Crit Rev Biotechnol 10:223–240

    CAS  PubMed  Google Scholar 

  • Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    CAS  PubMed  Google Scholar 

  • Nishimura N, Balch WE (1997) A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277:556–558

    CAS  PubMed  Google Scholar 

  • Nufer O, Kappeler F, Guldbrandsen S, Hauri HP (2003) ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J Cell Sci 116:4429–4440

    CAS  PubMed  Google Scholar 

  • Otte S, Barlowe C (2002) The Erv4lp-Erv46p complex: multiple export signals are required in trans for COPII dependent transport from the ER. EMBO J 21:6095–6104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagé N, Kluepfel D, Shareck F, Morosoli R (1996) Effect of signal peptide alterations and replacement on export of xylanase A in Streptomyces lividans. Appl Environ Microbiol 62:109–114

    PubMed  PubMed Central  Google Scholar 

  • Parsot C, Ménard R, Gounon P, Sansonetti PJ (1995) Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol 16:291–300

    CAS  PubMed  Google Scholar 

  • Pearse BR, Hebert DN (2010) Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. Biochim Biophys Acta 1803:684–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preston GM, Studholme DJ, Caldelari I (2005) Profiling the secretomes of plant pathogenic Proteobacteria. FEMS Microbiol Rev 29:331–360

    CAS  PubMed  Google Scholar 

  • Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA (1999) LST1 is a SEC24 homologue used for selec tive export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol 145:659–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson C, Bolhuis A (2001) Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2:350–356

    CAS  PubMed  Google Scholar 

  • Rose RW, Bruser T, Kissinger JC, Pohlschroder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950

    CAS  PubMed  Google Scholar 

  • Rutkowski DT, Ott CM, Polansky JR, Lingappa VR (2003) Signal sequences initiate the pathway of maturation in the endoplasmic reticulum lumen. J Biol Chem 278:30365–30372

    CAS  PubMed  Google Scholar 

  • Sandkvist M (2001) Biology of type II secretion. Mol Microbiol 40:271–283

    CAS  PubMed  Google Scholar 

  • Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K, van Zon M, Wever B, Piersma SR, Jiménez CR, Daffé M, Appelmelk BJ, Bitter W, van der Wel N, Peters PJ (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6:e1000794

    PubMed  PubMed Central  Google Scholar 

  • Sato K (2004) COPII Coat assembly and selective export from the endoplasmic reticulum. J Biochem 136:755–760

    CAS  PubMed  Google Scholar 

  • Sato K, Nakano A (2002) Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in Saccharo myces cerevisiae. Mol Biol Cell 13:2518–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Nakano A (2003) Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles. Mol Biol Cell 14:3055–3063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söhngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sijbrandi R, Urbanus ML, ten Hagen-Jongman CM, Bernstein HD, Oudega B, Otto BR, Luirink J (2003) Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J Biol Chem 278:4654–4659

    CAS  PubMed  Google Scholar 

  • Simone M, McCullen CA, Stahl LE, Binns AN (2001) The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41:1283–1293

    CAS  PubMed  Google Scholar 

  • Souza RC, del Rosario Quispe Saji G, Costa MO, Netto DS, Lima NC, Klein CC, Vasconcelos AT, Nicolás MF (2012) AtlasT4SS: a curated database for type IV secretion systems. BMC Microbiol 12:172

    PubMed  PubMed Central  Google Scholar 

  • Spang A (2009) On vesicle formation and tethering in the ER-Golgi shuttle. Curr Opin Cell Biol 21:531–536

    CAS  PubMed  Google Scholar 

  • Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, St Geme JW 3rd, Curtiss R 3rd (2000) Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens, an evolving story. Microbes Infect 2:1061–1072

    CAS  PubMed  Google Scholar 

  • Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, Wells JM (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66:3183–3189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang BL, Kausalya J, Low DY, Lock ML, Hong W (1999) A family of mammalian proteins homologous to yeast Sec24p. Biochem Biophys Res Commun 258:679–684

    CAS  PubMed  Google Scholar 

  • Thanassi DG, Hultgren SJ (2000) Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 12:420–430

    CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148

    PubMed Central  Google Scholar 

  • Thor F, Gautschi M, Geiger R, Helenius A (2009) Bulk flow revisited: transport of a soluble protein in the secretory pathway. Traffic 10:1819–1830

    CAS  PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, van Roosmalen ML, Wiegert T, Schumann W, Broekhuizen CP, Quax W, Venema G, Bron S, van Dijl JM (1998) Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalsma H, Kontinen VP, Prágai Z, Wu H, Meima R, Venema G, Bron S, Sarvas M, van Dijl JM (1999) The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis: signal peptidase II is required for the efficient secretion of α-amylase, a non-lipoprotein. J Biol Chem 274:1698–1707

    CAS  PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, Van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous α-amylase. Mol Gen Genet 240:428–434

    PubMed  Google Scholar 

  • van Dijl JM, Braun PG, Robinson C, Quax WJ, Antelmann H, Hecker M, Müller J, Tjalsma H, Bron S, Jongbloed JDH (2002) Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. J Biotechnol 98:243–254

    PubMed  Google Scholar 

  • Van Wely KH, Swaving J, Freudl R, Driessen AJ (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    PubMed  Google Scholar 

  • von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201

    Google Scholar 

  • Votsmeier C, Gallwitz D (2001) An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export. EMBO J 20:6742–6750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Daniels R, Hebert DN (2005) The cotranslational maturation of the type I membrane glycoprotein tyrosinase: the heat shock protein 70 system hands off to the lectin-based chaperone system. Mol Biol Cell 16:3740–3752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    CAS  PubMed  Google Scholar 

  • Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H (2009) Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155:741–750

    CAS  PubMed  Google Scholar 

  • Wendeler MW, Paccaud JP, Hauri HP (2007) Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep 8:258–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HC, Tokunaga M (1986) Biogenesis of lipoproteins in bacteria. Curr Top Microbiol Immunol 125:127–157

    CAS  PubMed  Google Scholar 

  • Xu L, Shen Y, Hou J, Peng B, Tang H, Bao X (2014) Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioengineer 117:45–52

    Google Scholar 

  • Yan S, Wu G (2011a) Prediction of Michaelis-Menten constant in beta-cellobiosidase’s reaction with lactoside as substrate. Enzyme Eng 1:102

    Google Scholar 

  • Yan S, Wu G (2011b) Prediction of Michaelis-Menten constant of beta-glucosidases using nitrophenyl-beta-D-glucopyranoside as substrate. Protein Pept Lett 18:1053–1057

    CAS  PubMed  Google Scholar 

  • Yan S, Wu G (2011c) Searching of predictors to predict pH of cellulases. Appl Biochem Biotech A: Enzyme Eng Biotech 165:856–869

    CAS  Google Scholar 

  • Yan S, Wu G (2012a) Exhausted jackknife validation exemplified by prediction of temperature optimum in enzymatic reaction of cellulases. Appl Biochem Biotech A: Enzyme Eng Biotech 166:997–1107

    CAS  Google Scholar 

  • Yan S, Wu G (2012b) Prediction of optimal pH and temperature of cellulases using neural network. Protein Pept Lett 19:29–39

    CAS  PubMed  Google Scholar 

  • Yan S, Wu G (2013a) Prediction of optimal pH in hydrolytic reaction of beta-glucosidase. Appl Biochem Biotech A: Enzyme Eng Biotech 169:1884–1894

    CAS  Google Scholar 

  • Yan S, Wu G (2013b) Prediction of temperature optimum in enzymatic reaction of beta-cellobiosidases with exhausted jackknife validation. Life Sci J 10:2180–2189

    Google Scholar 

  • Yan S, Wu G (2013c) Prediction of turnover number of cellulose 1,4-beta-cellobiosidase. Protein Pept Lett 20:255–264

    CAS  PubMed  Google Scholar 

  • Yan S, Wu G (2013d) Predictions of enzymatic parameters: a mini-review with focus on enzymes for biofuel. Appl Biochem Biotech A: Enzyme Eng Biotech 171:590–615

    CAS  Google Scholar 

  • Yan S, Wu G (2013e) Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels 6:117

    Google Scholar 

  • Yan S, Shi D, Nong H, Wu G (2011) Simultaneously predicting pH and temperature optimum in catalytic reaction of beta-glucosidase. Guangxi Sci 18:253–260

    Google Scholar 

  • Yan S, Shi D, Nong H, Wu G (2012) Predicting Km values of beta-glucosidases using cellobiose as substrate. Interdisc Sci Comput Life Sci 4:46–53

    CAS  Google Scholar 

Download references

Acknowledgments

The authers wish to express their sincere thanks to annomynous reviewers for their insight comments and indicating very helpful references, which sharpen up the points presented in this mini-review. This study was partly supported by Guangxi Science Foundation (2013GXNSDA019007 and 1347004-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Wu, G. Signal peptide of cellulase. Appl Microbiol Biotechnol 98, 5329–5362 (2014). https://doi.org/10.1007/s00253-014-5742-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5742-3

Keywords

Navigation