Applied Microbiology and Biotechnology

, Volume 98, Issue 13, pp 5991–6002 | Cite as

Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization

  • Min-Kyoung Kang
  • Jungseok Lee
  • Youngsoon Um
  • Taek Soon Lee
  • Michael Bott
  • Si Jae Park
  • Han Min Woo
Applied genetics and molecular biotechnology


Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11 ± 0.004 h−1 and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.


Corynebacterium glutamicum Synthetic biology Metabolic engineering BglBrick 

Supplementary material

253_2014_5714_MOESM1_ESM.pdf (72 kb)
ESM 1(PDF 72 kb)


  1. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74PubMedCentralPubMedCrossRefGoogle Scholar
  2. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11(1):13–19PubMedCrossRefGoogle Scholar
  3. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631–640PubMedCrossRefGoogle Scholar
  4. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369PubMedCentralPubMedCrossRefGoogle Scholar
  5. Boyle PM, Burrill DR, Inniss MC, Agapakis CM, Deardon A, Dewerd JG, Gedeon MA, Quinn JY, Paull ML, Raman AM, Theilmann MR, Wang L, Winn JC, Medvedik O, Schellenberg K, Haynes KA, Viel A, Brenner TJ, Church GM, Shah JV, Silver PA (2012) A BioBrick compatible strategy for genetic modification of plants. J Biol Eng 6(1):8PubMedCentralPubMedCrossRefGoogle Scholar
  6. Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose‐utilizing Corynebacterium glutamicum for production of 1,5‐diaminopentane. Biotechnol J 8(5):557–570PubMedCrossRefGoogle Scholar
  7. Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14(5):477–486PubMedCrossRefGoogle Scholar
  8. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759PubMedCrossRefGoogle Scholar
  9. Dusch N, Pühler A, Kalinowski J (1999) Expression of the Corynebacterium glutamicum panD gene encoding l-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65(4):1530–1539PubMedCentralPubMedGoogle Scholar
  10. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca RatonGoogle Scholar
  11. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102(1):93–98PubMedCrossRefGoogle Scholar
  12. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345PubMedCrossRefGoogle Scholar
  13. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108(2):504–509PubMedCentralPubMedCrossRefGoogle Scholar
  14. Harth G, Masleša-Galić S, Horwitz MA (2004) A two-plasmid system for stable, selective-pressure-independent expression of multiple extracellular proteins in mycobacteria. Microbiology 150(7):2143–2151PubMedCrossRefGoogle Scholar
  15. Hillson NJ (2011) DNA assembly method standardization for synthetic biomolecular circuits and systems. Design and Analysis of Biomolecular Circuits. Springer, New York, pp 295–314CrossRefGoogle Scholar
  16. Huang H-H, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593PubMedCentralPubMedCrossRefGoogle Scholar
  17. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2–3):99–109PubMedCrossRefGoogle Scholar
  18. Jakoby M, Ngouoto-Nkili C-E, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13(6):437–441CrossRefGoogle Scholar
  19. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104(1):5–25PubMedCrossRefGoogle Scholar
  20. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428PubMedCentralPubMedCrossRefGoogle Scholar
  21. Keasling JD (2008) From yeast to alkaloids. Nat Chem Biol 4(9):524–525PubMedCrossRefGoogle Scholar
  22. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195PubMedCrossRefGoogle Scholar
  23. Koffas MA, Jung GY, Stephanopoulos G (2003) Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng 5(1):32–41PubMedCrossRefGoogle Scholar
  24. Lausberg F, Chattopadhyay AR, Heyer A, Eggeling L, Freudl R (2012) A tetracycline inducible expression vector for Corynebacterium glutamicum allowing tightly regulable gene expression. Plasmid 68(2):142–147PubMedCrossRefGoogle Scholar
  25. Lee JW, Kim TY, Jang Y-S, Choi S, Lee SY (2011a) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29(8):370–378PubMedCrossRefGoogle Scholar
  26. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD (2011b) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12PubMedCentralPubMedCrossRefGoogle Scholar
  27. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256PubMedCrossRefGoogle Scholar
  28. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131–140PubMedCentralPubMedCrossRefGoogle Scholar
  29. Nesvera J, Patek M, Hochmannova J, Abrhamova Z, Becvarova V, Jelinkova M, Vohradsky J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179(5):1525–1532PubMedCentralPubMedGoogle Scholar
  30. Pátek M, Nesvera J (2013) Promoters and plasmid vectors of Corynebacterium glutamicum in Corynebacterium glutamicum: biology and biotechnology, 2nd edn. Springer Berlin, HeidelbergGoogle Scholar
  31. Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104(1–3):311–323PubMedCrossRefGoogle Scholar
  32. Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71(11):7139–7144PubMedCentralPubMedCrossRefGoogle Scholar
  33. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032PubMedCrossRefGoogle Scholar
  34. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207PubMedCrossRefGoogle Scholar
  35. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6(2):242–251PubMedCrossRefGoogle Scholar
  36. Ravasi P, Peiru S, Gramajo H, Menzella HG (2012) Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Fact 11(1):1–11CrossRefGoogle Scholar
  37. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943PubMedCrossRefGoogle Scholar
  38. Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85(1):105–115PubMedCrossRefGoogle Scholar
  39. Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5PubMedCentralPubMedCrossRefGoogle Scholar
  40. Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045–1055PubMedCentralPubMedCrossRefGoogle Scholar
  41. Smolke CD, Tyo KEJ (2012) Synthetic biology: emerging methodologies to catalyze the metabolic engineering design cycle. Metab Eng 14(3):187–188PubMedCrossRefGoogle Scholar
  42. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489PubMedCentralPubMedCrossRefGoogle Scholar
  43. Van der Rest M, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541–545PubMedCrossRefGoogle Scholar
  44. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9(3):268–274PubMedCrossRefGoogle Scholar
  45. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6(2):87–102PubMedCentralPubMedCrossRefGoogle Scholar
  46. Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng 110(11):2959–2969PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Min-Kyoung Kang
    • 1
  • Jungseok Lee
    • 1
    • 2
  • Youngsoon Um
    • 1
    • 4
  • Taek Soon Lee
    • 5
    • 6
  • Michael Bott
    • 7
  • Si Jae Park
    • 8
  • Han Min Woo
    • 1
    • 3
    • 4
  1. 1.Clean Energy Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Green School, Korea UniversitySeoulRepublic of Korea
  4. 4.Department of Clean Energy and Chemical EngineeringUniversity of Science and Technology (UST)DaejeonRepublic of Korea
  5. 5.Joint BioEnergy InstituteEmeryvilleUSA
  6. 6.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.Institute of Bio- and GeosciencesIBG-1: Biotechnology, Forschungszentrum JülichJülichGermany
  8. 8.Department of Environmental Engineering and EnergyMyongji UniversityYongin-siRepublic of Korea

Personalised recommendations