Skip to main content
Log in

Native soil fungi associated with compostable plastics in three contrasting agricultural settings

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plastics are used widely as agricultural mulches to suppress weeds and retain soil moisture. Disposal of conventional plastic mulches requires physical removal for disposal in a landfill or incineration. Biodegradable plastic mulches that could be tilled into the soil at the end of a growing season represent an attractive alternative to conventional plastic mulches. In this study, three commercially available mulches labeled as “biodegradable” and one experimental, potentially biodegradable mulch were used during a tomato growing season, and then buried in field soil at three locations for approximately 6 months, as would occur typically in an agricultural setting. Degradation after 6 months in soil was minimal for all but the cellulosic mulch. After removal of mulches from soil, fungi were isolated from the mulch surfaces and tested for their ability to colonize and degrade the same mulches in pure culture. The majority of culturable soil fungi that colonized biodegradable mulches were within the family Trichocomaceae (which includes beneficial, pathogenic, and mycotoxigenic species of Aspergillus and Penicillium). These isolates were phylogenetically similar to fungi previously reported to degrade both conventional and biodegradable plastics. Under pure culture conditions, only a subset of fungal isolates achieved detectable mulch degradation. No isolate substantially degraded any mulch. Additionally, DNA was extracted from bulk soil surrounding buried mulches and ribosomal DNA was used to assess the soil microbial community. Soil microbial community structure was significantly affected by geographical location, but not by mulch treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albertsson A-C, Ranby B (1979) Biodegradation of synthetic polymers. IV. The 14CO2 method applied to a linear polyethylene containing a biodegradable additive. J Appl Polym Sci Appl Polym Symp 35:423

    CAS  Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. John Wiley and Sons, Inc., New York, p 308

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • ASTM D 5988-12 (2012) Standard test method for determining aerobic biodegradation of plastic materials in soil. American Society for Testing and Materials International, West Conshohocken

    Google Scholar 

  • ASTM D 6400-04 (2004) (2004) Standard specification for compostable plastics. American Society for Testing and Materials International, West Conshohocken

    Google Scholar 

  • Bailes G, Lind M, Ely A, Powell M, Moore-Kucera J, Miles C, Inglis D, Brodhagen M (2013) Isolation of native soil microorganisms with potential for breaking down biodegradable plastic films used in agriculture. J Vis Exp 75:e50373. doi:10.3791/50373

    PubMed  Google Scholar 

  • Benedict CV, Cook WJ, Jarrett P, Cameron JA, Huang SJ, Bell JP (1983a) Fungal degradation of polycaprolactones. J Appl Polym Sci 28:327–334

    Article  CAS  Google Scholar 

  • Benedict CV, Cameron JA, Huang SJ (1983b) Polycaprolactone degradation by mixed and pure cultures of bacteria and a yeast. J Appl Polym Sci 28:335–342

    Article  CAS  Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21:575–579

    Article  CAS  Google Scholar 

  • Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai H, Dave V, Gross RA, McCarthy SP (1996) Effects of physical aging crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci B Polym Phys 34:2701–2708

    Article  Google Scholar 

  • Caporaso GJ, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer M, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) Qiime allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cook WJ, Cameron JA, Bell JP, Huang SJ (1981) Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. J Polym Sci B 19:159–165

    Google Scholar 

  • CSN EN 13432 (2000) Packaging—requirements for packaging recoverable through composting and biodegradation—test scheme and evaluation criteria for the final acceptance of packaging. CSN EN Standards, British-Adopted European Standard, European Committee for Standardization, Brussels

    Google Scholar 

  • Culleton H, McKie V, de Vries RP (2013) Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus? Biotechnol J 8:884–894

    Article  CAS  PubMed  Google Scholar 

  • De Gannes V, Eudoxie G, Hickey WJ (2013) Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol 4:164. doi:10.3389/fmicb.2013.00164

    Article  PubMed Central  PubMed  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology. APS Press, St. Paul

    Google Scholar 

  • Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El-Shafei H, El-Nasser NHA, Kansoh AL, Ali AM (1998) Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym Degrad Stab 62:361–365

    Article  CAS  Google Scholar 

  • Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443–449

    Article  CAS  PubMed  Google Scholar 

  • Fossi MC, Panti C, Guerranti C, Coppola D, Giannetti M, Marsili L, Minutoli R (2012) Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar Pollut Bull 4:2374–2379

    Article  Google Scholar 

  • Fry DM, Fefer SI, Sileo L (1987) Ingestion of plastic by Laysan Albatrosses and Wedge-tailed Shearwaters in the Hawaiian Islands. Mar Pollut Bull 18:339–343

    Article  Google Scholar 

  • Ghosh SK, Pal S, Ray S (2013) Study of microbes having potentiality for biodegradation of plastics. Environ Sci Pollut Res 20:4339–4355

    Article  CAS  Google Scholar 

  • Gregory MR (2009) Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Phil Trans R Soc B 364:2013–2025. doi:10.1098/rstb.2008.0265

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer J, Kraak MHS, Parsons JR (2012) Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam T 220:1–44. doi:10.1007/978-1-4614-3414-6_1

    Google Scholar 

  • Hayes DG, Dharmalingam S, Wadsworth LC, Leonas KK, Miles C, Inglis DA (2012) Biodegradable agricultural mulches derived from biopolymers. In: Khemaani K, Scholz C (eds) Degradable polymers and materials, principles and practice, 2nd edn. ACS Symposium Series, vol 1114, 2nd edn. American Chemical Society Press, Washington, DC, pp 201–223

    Google Scholar 

  • Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca Raton, pp 527–577

    Google Scholar 

  • Hill EE, Hankin L, Stephens GR (1982) Mulches: Their effects on fruit set, timing and yields of vegetables. Bulletin 805. The Connecticut Agricultural Experiment Station, New Haven

    Google Scholar 

  • Hirsch P (1986) Microbial life at extremely low nutrient levels. Adv Space Res 6:287–298

    Article  CAS  PubMed  Google Scholar 

  • Imam SH, Tosteson TR (1992) Fate of starch-containing plastic films exposed in aquatic habitats. Curr Microbiol 25:1–8

    Article  CAS  Google Scholar 

  • ISO 17556 (2012) Plastics—determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. International Organization for Standardization, Geneva

    Google Scholar 

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycologia 175:369–379

    Google Scholar 

  • Kamiya M, Asakawa S, Kimura M (2007) Molecular analysis of fungal communities of biodegradable plastics in two Japanese soils. Soil Sci Plant Nutr 53:568–574

    Article  CAS  Google Scholar 

  • Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab 98:2063–2071

    Article  CAS  Google Scholar 

  • Karjomaa S, Suortti T, Lempiäinen R, Selin J-F, Itävaara M (1998) Microbial degradation of poly-(L-lactic acid) oligomers. Polym Degrad Stab 59:333–336

    Article  CAS  Google Scholar 

  • Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529

    Article  CAS  Google Scholar 

  • Kawai F (2010) Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. In: Cheng H, Gross RA (eds) Green polymer chemistry: Biocatalysis and biomaterials, ACS Symposium Series. American Chemical Society, Washington, DC

    Google Scholar 

  • Kern ME, Blevins KS (1997) Medical mycology: A self-instructional text, 2nd edn. FA Davis Company, Philadelphia

    Google Scholar 

  • Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: Field study. Chemosphere 71:942–953

  • Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E (2006) Standardization and certification in the area of environmentally degradable plastics. Polym Degrad Stab 91:2819–2833

    Article  CAS  Google Scholar 

  • Kuhn DM, Ghannoum MA (2003) Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 16:144–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laist DW (1997) Impacts of marine debris: Entanglement of marine life in debris including a comprehensive list of species with entanglement and ingestion records. In: Coe JM, Rogers DB (eds) Marine debris. Springer, Berlin

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li C, Moore-Kucera J, Miles C, Leonas K, Lee J, Corbin A, Inglis D (2014) Degradation of potentially biodegradable plastic mulch films at three diverse U.S. locations. Agroecol Sustain Food Sys (formerly J Sustain Agr) (in press)

  • Lunt J (2000) Polylactic acid polymers for fibers and nonwovens. International Fiber Journal 15:48–52

  • Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788

    Article  CAS  PubMed  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mellon JE, Cotty PJ, Dowd MK (2007) Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization. Appl Microbiol Biotechnol 77:497–504

    Article  CAS  PubMed  Google Scholar 

  • Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, Inglis D (2012) Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortSci 47:1–8

    Google Scholar 

  • Mogil’nitskii GM, Sagatelyan RT, Kutishcheva TN, Zhukova SV, Kerimov SI, Parfenova TB (1987) Disruption of the protective properties of the polyvinyl chloride coating under the effect of microorganisms. Prot Met 23(Engl Transl):173–175

    Google Scholar 

  • Ohkita T, Lee SH (2006) Thermal degradation and biodegradability of poly (lactic acid) corn starch composites. J Appl Polym Sci 100:3009–3017

    Article  CAS  Google Scholar 

  • Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM, Camargo FAO (2009) Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym Degrad Stab 94:965–970

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package. R package version 1. pp 17-18. http://vegan.r-forge.r-project.org/. Accessed 31 Dec 2013

  • Page B, McKenzie J, McIntosh R, Baylis A, Morriessey A, Calvert N, Haase T, Berris M, Dowie D, Shaughnessy PD, Goldsworthy SD (2004) Entanglement of Australian sea lions and New Zealand fur seals in lost fishing gear and other marine debris before and after government and industry attempts to reduce the problem. Mar Pollut Bull 49:33–42

    Article  CAS  PubMed  Google Scholar 

  • Parkinson SM, Wainwright M, Killham K (1989) Observation on oligotrophic growth of fungi on silica gel. Mycol Res 93:529–534

    Article  Google Scholar 

  • Prenafet-Boldú FX, Summerbell R, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0

    Google Scholar 

  • Rudin A (1999) Polymer science and engineering, 2nd edn. Academic Press, London, pp 106–107

    Google Scholar 

  • Rudnik E (2008) Compostable polymer materials. Elsevier, Oxford, p 11

    Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MP, Boulanger L-A, Bascom-Slack C, Strobel S (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Env Microbiol 77:6076–6084

    Article  CAS  Google Scholar 

  • Sang B-I, Hori K, Tanji Y, Unno H (2002) Fungal contribution to in situ biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film in soil. Appl Microbiol Biotechnol 58:241–247

    Article  CAS  PubMed  Google Scholar 

  • Saponaro S, Sezenna E, Innocenti FD, Mezzanotte V, Bonomo L (2008) A screening model for fate and transport of BDM polyesters in soil. J Environ Manage 88:1078–1087

  • Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, Podar M (2013) Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol 15:1882–1899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Phil Trans R Soc B 364:2127–2139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanier RY (1941) Studies on marine agar-digesting bacteria. J Bacteriol 42:527–559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinbach WJ (2008) Clinical aspects of the genus Aspergillus. In: Goldman GH, Osmani SA (eds) The aspergilli: Genomics, medical aspects, biotechnology, and research methods. CRC Press, Taylor and Francis Group, Boca Raton, pp 359–375

    Google Scholar 

  • Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764

    Article  CAS  PubMed  Google Scholar 

  • Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Phil Trans R Soc B 364:2027–2045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Phil Trans R Soc B 364:2153–2166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  PubMed  Google Scholar 

  • Tokiwa Y, Suzuki T (1974) Degradation of poly(ethylene glycol) adipate by a fungus. J Ferm Technol 52:393–398

    CAS  Google Scholar 

  • Tokiwa Y, Suzuki T (1977a) Purification of polyethylene adipate degrading enzyme produced by Penicillium sp. strain 14-3. Agric Biol Chem 41:265–274

    Article  CAS  Google Scholar 

  • Tokiwa Y, Suzuki T (1977b) Hydrolysis of polyesters by lipases. Nature 270:76–78

    Article  CAS  PubMed  Google Scholar 

  • Tsao R, Anderson TA, Coats JR (1993) The influence of soil macroinvertebrates on primary biodegradation of starch-containing polyethylene films. J Environ Polym Degrad 1:301–306

    Article  CAS  Google Scholar 

  • van der Zee M (2011) Analytical methods for monitoring biodegradation processes of environmentally degradable polymers. In: Lendlein A, Sisson A (eds) Handbook of biodegradable polymers. Wiley-VCH, Weinheim, pp 263–281

    Google Scholar 

  • Wadsworth LC, Hayes DG, Wszelaki AL, Washington TL, Martin J, Lee J, Raley R, Pannell T, Dharmalingam S, Miles C, Inglis DA, Saxton AM (2013) Evaluation of degradable spun-melt 100% polylactic acid nonwoven mulch materials in a greenhouse environment. J Eng Fiber Fabr 8:50–59

    Google Scholar 

  • Wagner HL (1985) The Mark-Houwink-Sakurada equation for the viscosity of atactic polystyrene. J Phys Chem Ref Data 14:1101–1106

    Article  CAS  Google Scholar 

  • Wainwright M, Barakah F, Al-Turk I, Ali TA (1991) Oligotrophic micro-organisms in industry, medicine, and the environment. Sci Prog Edinb 75:313–322

    CAS  Google Scholar 

  • Wainwright M, Ali TA, Barakah F (1993) A review of the role of oligotrophic micro-organisms in biodeterioration. Int Biodeterior Biodegrad 31:1–13

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2012) gplots: various R programming tools for plotting data. R package version 2.11.0. http://cran.r-project.org/web/packages/gplots/index.html/ Accessed 31 Dec 2013

  • Whitney PJ, Swaffield CH, Graffham AJ (1993) The environmental degradation of thin plastic films. Int Biodeterior Biodegrad 31:179–198

    Article  CAS  Google Scholar 

  • Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Yabannavar AV, Bartha R (1994) Methods for assessment of biodegradability of plastic films in soil. Appl Environ Microbiol 60:3608–3614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2000) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    Article  Google Scholar 

  • Yu J, Payne GA, Campbell BC, Guo B, Cleveland TE, Robens JF, Keller NP, Bennett JW, Nierman WC, Steinbach WJ (2008) Mycotoxin production and prevention of aflatoxin contamination in food and feed. In: Goldman GH, Osmani SA (eds) The aspergilli: Genomics, medical aspects, biotechnology, and research methods. CRC Press, Taylor and Francis Group, Boca Raton, pp 457–472

    Google Scholar 

  • Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Stephen Alderman and Dr. David Leaf provided expertise in obtaining light micrographs. Erin Macri and Charles Wandler provided expertise in scanning electron microscopy and gel permeation chromatography. Andrew Ely, Carl Evans, Ashley Florence, Briana Kinash, Megan Leonhard, Margaret Lind, Marianne Powell, and Maria McSharry provided excellent technical assistance and thoughtful discussions. This research was funded through a grant from the United States Department of Agriculture, National Institute of Food and Agriculture, Specialty Crops Research Initiative, Standard Research and Extension Project Grant Award No. 2009-02484. This work was also supported by Western Washington University (WWU) Research and Creative Opportunities for Undergraduates grants to M. McSharry and K. Kinloch and by a WWU Biology Chair Research Award to M. McSharry.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Brodhagen.

Additional information

Jennifer Moore-Kucera, Stephen B. Cox, and Mark Peyron contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore-Kucera, J., Cox, S.B., Peyron, M. et al. Native soil fungi associated with compostable plastics in three contrasting agricultural settings. Appl Microbiol Biotechnol 98, 6467–6485 (2014). https://doi.org/10.1007/s00253-014-5711-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5711-x

Keywords

Navigation