Skip to main content

Advertisement

Log in

Applications and impacts of stable isotope probing for analysis of microbial interactions

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Probing the interactions between microbes and their environment with stable isotopes became a powerful technique over the last years. While quadruple mass spectrometry or isotope ratio mass spectrometry (IRMS) require at least 300,000 bacterial cells, analysis at the single-cell level is possible with secondary ion mass spectrometry (SIMS) or Raman microspectrometry. While SIMS needs enrichments of more than 0.1 and Raman microscopy of more than 25 at.-%, IRMS can deal with 0.0001 at.-%. To find out who eats what, one has to discern between the different species in a community. Several methods have been introduced to discern between the different taxa in microbial communities, e.g., by using fatty acids as biomarkers, density centrifugation of DNA/RNA, or fluorescent in situ hybridization (FISH) with phylogenetic probes. While the biomarker approach can be coupled with the high sensitivity of the IRMS, the DNA approach gives in general a better phylogenetic resolution of the metabolic active microbes. A combination of both is the separation via coupling of FISH-probes to magnetic beads or fluorescent assisted cell sorting (FACS) of stained cells leading to fractions which can be analyzed by IRMS. Applying these techniques over a time course can reveal the metabolic kinetics and food webs. In this review, the different methods are presented with examples and their advantages and disadvantages are discussed. An outlook on the combination of the various techniques and their applications in microbial ecology is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abraham W-R, Gutierrez M (2012) The unique kinetics of glycolipids in Mycobacterium bovis BCG revealed by stable isotope probing. Int J Med Microbiol 302S1:135

    Google Scholar 

  • Abraham W-R, Hesse C, Pelz O (1998) Ratios of carbon isotopes in microbial lipids as indicator of substrate usage. Appl Environ Microbiol 64:4202–4209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cébron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environm Microbiol 73:798–807

    Article  Google Scholar 

  • Coplen TB (1995) Discontinuance of SMOW and PDB. Nature 375:285

    Article  CAS  Google Scholar 

  • Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    Article  CAS  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  CAS  Google Scholar 

  • Cupples AM, Shaffer EA, Chee-Sanford JC, Sims GK (2007) DNA buoyant density shifts during 15 N-DNA stable isotope probing. Microbiol Res 162:328–334

    Article  CAS  PubMed  Google Scholar 

  • Deines P, Bodelier PLE, Eller G (2007) Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems. Environm Microbiol 9:1126–1134

    Article  CAS  Google Scholar 

  • Desaty D, McInnes AG, Smith DG, Vining LC (1968) Use of 13C in biosynthetic studies. Incorporation of isotopically labeled acetate and aspartate into fusaric acid. Can J Biochem 46:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Dumont MG, Murrell JC (2005) Innovation: stable isotope probing—linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  PubMed  Google Scholar 

  • Dumont MG, Pommerenke B, Casper P, Conrad R (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167

    Article  CAS  PubMed  Google Scholar 

  • Estrela AB, Rohde M, Gutierrez MG, Molinari G, Abraham WR (2013) Human ß-defensin-2 induces extracellular accumulation of adenosine in Escherichia coli. Antimicrob Agents Chemother 57:4387–4393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evershed RP, Crossman ZM, Bull ID, Mottram H, Dungait JAJ, Maxfield PJ, Brennand EL (2006) 13C-Labelling of lipids to investigate microbial communities in the environment. Curr Opin Biotechnol 17:72–82

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Lovanh N, Alvarez PJ (2004) The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations. Water Res 38:2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Friedrich MW (2006) Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol 17:59–66

    Article  CAS  PubMed  Google Scholar 

  • Friedrich MW (2011) Trophic interactions in microbial communities and food webs traced by stable isotope probing of nucleic acids. In: Murrell C, Whiteley AS (eds) Stable isotope probing in microbial molecular ecology. Wiley-VCH, Weinheim, pp 203–232

    Google Scholar 

  • Gallagher E, McGuinness L, Phelps C, Young LY, Kerkhof LJ (2005) 13C-Carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl Environ Microbiol 71:5192–5196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glaubitz S, Lueders T, Abraham W-R, Jost G, Jürgens K, Labrenz M (2009) 13C-isotope analyses reveal that chemolithoautotrophic gamma- and epsilon-proteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environm Microbiol 11:326–337

    Article  CAS  Google Scholar 

  • Godin JP, McCullagh JSO (2011) Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). Rapid Commun Mass Spectrom 25:3019–3028

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RI, Manefield M, Bailey MJ, Whiteley AS, Ostle N, McNamara N, O’Donnell AG (2004) 13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. J Microbiol Methods 58:119–129

    Article  CAS  PubMed  Google Scholar 

  • Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, Pichler P, Mechtler K, Müller A, Baranyi C, Toenshoff ER, Montanaro J, Horn M (2010) Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol Microbiol 77:687–700

    Article  CAS  PubMed  Google Scholar 

  • Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9:1878–1889

    Article  CAS  PubMed  Google Scholar 

  • Huang WE, Ferguson A, Singer AC, Lawson K, Thompson IP, Kalin RM, Larkin MJ, Bailey MJ, Whiteley AS (2009) Resolving genetic functions within microbial populations: In situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Appl Environ Microbiol 75:234–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining light on the microbial world: the application of Raman microspectroscopy. Adv Appl Microbiol 70:153–186

    Article  CAS  PubMed  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  CAS  PubMed  Google Scholar 

  • Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, Von Bergen M, Richnow HH, Vogt C (2010) Protein-based stable isotope probing. Nature Prot 5:1957–1966

    Article  CAS  Google Scholar 

  • Kouchii H (1982) Direct analysis of 13C abundance in plant carbohydrates by gas chromatography-mass spectrometry. J Chromatograph A 241:305–323

    Article  Google Scholar 

  • Larsen T, Ventura M, Andersen N, O’Brien DM, Piatkowski U, McCarthy MD (2013) Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8(9):e73441. doi:10.1371/journal.pone.0073441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Li M, Canniffe DP, Jackson PJ, Davison PA, Fitzgerald S, Dickman MJ, Burgess JG, Hunter CN, Huang WE (2012) Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J 6:875–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin JL, Radajewski S, Eshinimaev BT, Trotsenko YA, McDonald IR, Murrell JC (2004) Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ Microbiol 6:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Linton RW, Goldsmith JG (1992) The role of secondary ion mass spectrometry (SIMS) in biological microanalysis: technique comparisons and prospects. Biol Cell 74:147–160

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science 309:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Lueders T, Friedrich MW, Conrad R (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7:326–336

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Abraham W-R, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474–481

    Article  CAS  PubMed  Google Scholar 

  • Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78

    Article  CAS  PubMed  Google Scholar 

  • MacGregor BJ, Brüchert V, Fleischer S, Amann R (2002) Isolation of small-subunit rRNA for stable isotopic characterization. Environ Microbiol 4:451–464

    Article  CAS  PubMed  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauclaire L, Thullner M, Pelz O, Abraham W-R, Zeyer J (2003) Assimilation of toluene carbon along a bacteria–protist food chain determined by 13C-enrichment of biomarker fatty acids. J Microbiol Methods 55:635–649

    Article  CAS  PubMed  Google Scholar 

  • Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842:351–371

    Article  CAS  PubMed  Google Scholar 

  • Miyatake T, MacGregor BJ, Boschker HTS (2009) Linking microbial community function to phylogeny of sulfate-reducing Deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA. Appl Environ Microbiol 75:4927–4935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406. doi:10.1111/1574-6976.12019

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC, Whiteley AS (eds) (2011) Stable isotope probing and related technologies. Wiley-VCH, Weinheim

    Google Scholar 

  • Musat N, Halm H, Winterholer B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jørgensen BB, Kuypers MMM (2008) A single cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci U S A 105:17861–17866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC (2007) DNA stable-isotope probing. Nat Protoc 2:860–866

    Article  CAS  PubMed  Google Scholar 

  • Niemann H, Elvert M (2008) Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org Geochem 39:1668–1677

    Article  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  CAS  PubMed  Google Scholar 

  • Pawelczyk S, Bumann D, Abraham W-R (2011) Kinetics of carbon sharing in a bacterial consortium revealed by combining stable isotope probing with fluorescence-activated cell sorting. J Appl Microbiol 110:1065–1073

    Article  CAS  Google Scholar 

  • Pelz O, Tesar M, Wittich R-M, Moore ERB, Timmis KN, Abraham W-R (1999) Towards elucidation of microbial community metabolic pathways: Unravelling the network of carbon sharing in a pollutant degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environ Microbiol 1:167–174

    Article  CAS  PubMed  Google Scholar 

  • Pelz O, Chatzinotas A, Andersen N, Bernasconi SM, Hesse C, Abraham W-R, Zeyer J (2001) Use of isotope and molecular techniques to identify the toluene degrading population in anaerobic microcosms. Archiv Microbiol 175:270–281

    Article  CAS  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pester M, Bittner N, Deevong P, Wagner M, Loy A (2010) A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J 2010:1–12

    Google Scholar 

  • Pett-Ridge J, Weber PK (2012) NanoSIP: NanoSIMS applications for microbial biology. Methods Mol Biol 881:375–408

    Article  CAS  PubMed  Google Scholar 

  • Pilloni G, von Netzer F, Engel M, Lueders T (2011) Electronacceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78:165–175

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI, Rangel-Castro JI, Killham K (2006) Studying plant-microbe interactions using stable isotope technologies. Curr Opin Biotechnol 17:98–102

    Article  CAS  PubMed  Google Scholar 

  • Qiu Q, Noll M, Abraham W-R, Lu Y, Conrad R (2008) Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J 2:602–614

    Article  CAS  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  • Rangel-Castro JI, Prosser JI, Killham K, Nicol GW, Meharg A, Ostle N, Anderson IC, Scrimgeour CM, Ineson P (2005) Stable isotope probing analysis of the influence of liming on root exudates utilization by soil microorganisms. Environ Microbiol 7:828–838

    Article  CAS  PubMed  Google Scholar 

  • Santamaria-Fernandez R, Carter D, Hearn R (2008) Precise and traceable 13C/12C isotope amount ratios by multicollector ICPMS. Anal Chem 80:5963–5969

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K (2004) Metabolic flux analysis based on 13C-labeling experiments and integration of the information with gene and protein expression patterns. Adv Biochem Eng Biotechnol 91:1–49

    CAS  PubMed  Google Scholar 

  • Singleton DR, Hunt M, Powell SN, Frontera-Suau R, Aitken MD (2007) Stable-isotope probing with multiple growth substrates to determine substrate specificity of uncultivated bacteria. J Microbiol Meth 69:180–187

    Article  CAS  Google Scholar 

  • Stadermann FJ, Walker RM, Zinner E (1999) Nanosims: the next generation ion probe for the microanalysis of extraterrestrial material. Meteorit Planet Sci 34:A111–A112

    Google Scholar 

  • Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, Buscot F, Richnow HH, von Bergen M, Seifert J (2012) Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J 6:2291–2301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tillmann S (2004) Assessment of the degradation potential of microbial biocenoses and identification of bacterial taxa involved in the organic degradation using Isotope Ratio Mass Spectrometry IRMS. PhD Thesis, Technical University Braunschweig, Braunschweig, Germany. http://www.digibib.tu-bs.de/?docid=00001553

  • Tillmann S, Strömpl C, Timmis KN, Abraham W-R (2005) Stable isotope probing reveals the dominant role of Burkholderia sp. in aerobic degradation of PCBs. FEMS Microb Ecol 52:207–217

    Article  CAS  Google Scholar 

  • Tomes GAR, Brian MV (1946) An electronic method of tracing the movements of beetles in the field. Nature 158:551

    Article  CAS  PubMed  Google Scholar 

  • van Eijk HMH, Wijnands KAP, Bessems BAFM, Damink SWO, Dejong CHC, Poeze M (2012) High sensitivity measurement of amino acid isotope enrichment using liquid chromatography–mass spectrometry. J Chromatograph B 905:31–36

    Article  Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microorganisms as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    Article  CAS  PubMed  Google Scholar 

  • Webb AH, Friedberg F, Marshall LM (1950) Incorporation of 14C labeled glycine into yeast protein. BBA - Biochim Biophys Acta 6:568–571

    Article  Google Scholar 

  • Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ (2006) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environm Microbiol 8:1575–1589

    Article  CAS  Google Scholar 

  • Wegener WS, Reeves HC, Ajl SJ (1927) Propionate oxidation in Escherichia coli. Arch Biochem Biophys 121:440–442

    Article  Google Scholar 

  • Witte U, Wenzhöfer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham W-R, Jörgensen BB, Pfannkuche O (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Kenneth N. Timmis for his help in the establishment of isotope ratio analyses at the Helmholtz Center for Infection Research. He also thanks the members of his research group for their enthusiastic work in this field and Prof. A. Steinbüchel for his invitation to this review. The financial support of the German Ministry for Education and Research (BMBF) for the establishment of the Biofilm Center is gratefully acknowledged.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Rainer Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, WR. Applications and impacts of stable isotope probing for analysis of microbial interactions. Appl Microbiol Biotechnol 98, 4817–4828 (2014). https://doi.org/10.1007/s00253-014-5705-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5705-8

Keywords