Abstract
Digital image analysis of high time resolution video microscopy was used to investigate hyphal growth dynamics in different Candida albicans strains. The effects of the quorum sensing molecules tyrosol and farnesol, the deletion of the fungus specific protein phosphatase Z1 CaPPZ1), and the hypha-specific cyclin (HGC1) genes were analyzed by this method. Our system monitored cell growth in a CO2 incubator under near-physiological conditions and measured three major parameters under the following stringent conditions: (a) the time of yeast cell adherence, (b) the time of hyphal outgrowth, and (c) the rate of hyphal growth. This method showed that hyphal extension of wild-type SC5314 cells was accelerated by tyrosol and inhibited by farnesol. Hyphal growth rate was moderately lower in cappz1 and strongly reduced in hgc1 mutants. In addition, tyrosol treatment caused a firm adherence, while farnesol treatment and hgc1 mutation prevented the adherence of yeast cells to the surface of the culture flask. Transition from yeast-to-hyphal state was faster after tyrosol treatment, while it was reduced in farnesol-treated cells as well as in the cappz1 and hgc1 mutants. Our data confirm the notion that the attachment of yeast cells, the yeast-to-hyphal transition, and hyphal growth rate are closely related processes. Time-lapse video microscopy combined with image analysis offers a convenient and reliable method of testing chemicals, including potential drug candidates, and genetic manipulations on the dynamic morphological changes in C. albicans strains.
This is a preview of subscription content, access via your institution.





References
Adam C, Erdei E, Casado C, Kovacs L, Gonzalez A, Majoros L, Petrenyi K, Bagossi P, Farkas I, Molnar M, Pocsi I, Arino J, Dombradi V (2012) Protein phosphatase cappz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans. Microbiology 158(Pt 5):1258–1267. doi:10.1099/mic.0.057075-0
Alem MA, Oteef MD, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 5(10):1770–1779. doi:10.1128/EC.00219-06
Banfalvi G, Sarvari A, Nagy G (2012) Chromatin changes induced by Pb and Cd in human cells. Toxicol In Vitro 26(6):1064–1071. doi:10.1016/j.tiv.2012.03.016
Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schäfer A, Brown AJ, Gow NA (2003) Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot Cell 2(3):398–410. doi:10.1128/EC.2.3.398-410.2003
Brothers KM, Gratacap RL, Barker SE, Newman ZR, Norum A, Wheeler RT (2013) NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog 9(10):e1003634. doi:10.1371/journal.ppat.1003634
Brown AJP (2002) Morphogenetic signalling pathways in Candida albicans. In: Calderone R (ed) Candida and Candidiasis. American Society for Microbiology, Washington, DC, pp 95–106
Brown AJ, Gow NA (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7(8):333–338. doi:10.1016/S0966-842X(99)01556-5
Bulad K, Taylor RL, Verran J, McCord JF (2004) Colonization and penetration of denture soft lining materials by Candida albicans. Dent Mater 20(2):167–175. doi:10.1016/S0109-5641(03)00088-5
Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC (2010) Biofilm formation on dental restorative and implant materials. J Dent Res 89(7):657–665. doi:10.1177/0022034510368644
Calderone RA, Lehrer N, Segal E (1984) Adherence of Candida albicans to buccal and vaginal epithelial cells: ultrastructural observations. Can J Microbiol 30(8):1001–1007
Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101(14):5048–5052. doi:10.1073/pnas.0401416101
de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N (2013) Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12(4):470–481. doi:10.1128/EC.00364-12
Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198(1):179–182. doi:10.1007/BF00328721
Gow NA, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15(4):406–412. doi:10.1016/j.mib.2012.04.005
Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992. doi:10.1128/AEM.67.7.2982-2992.2001
Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B (2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10(1):85–93. doi:10.1586/eri.11.152
Kaneko Y, Miyagawa S, Takeda O, Hakariya M, Matsumoto S, Ohno H, Miyazaki Y (2013) Real-time microscopic observation of Candida biofilm development and effects due to micafungin and fluconazole. Antimicrob Agents Chemother 57(5):2226–2230. doi:10.1128/AAC.02290-12
Kimura LH, Pearsall NN (1978) Adherence of Candida albicans to human buccal epithelial cells. Infect Immun 21(1):64–68
Kimura LH, Pearsall NN (1980) Relationship between germination of Candida albicans and increased adherence to human buccal epithelial cells. Infect Immun 28(2):464–468
King RD, Lee JC, Morris AL (1980) Adherence of Candida albicans and other Candida species to mucosal epithelial cells. Infect Immun 27(2):667–674
Kiremitçi-Gümüşderelioglu M, Pesmen A (1996) Microbial adhesion to ionogenic PHEMA, PU and PP implants. Biomaterials 17(4):443–449. doi:10.1016/0142-9612(96)89662-1
Klotz SA, Drutz DJ, Zajic JE (1985) Factors governing adherence of Candida species to plastic surfaces. Infect Immun 50:97–101
Liu H (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4(6):728–735. doi:10.1016/S1369-5274(01)00275-2
Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90(5):939–949. doi:10.1016/S0092-8674(00)80358-X
Madhani HD, Fink GR (1998) The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8(9):348–353. doi:10.1016/S0962-8924(98)01298-7
Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128. doi:10.4161/viru.22913
Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165
Mitrovich QM, Tuch BB, Guthrie C, Johnson AD (2007) Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans. Genome Res 17(4):492–502. doi:10.1101/gr.6111907
Naglik JR, Moyes DL, Wächtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 13(12–13):963–976. doi:10.1016/j.micinf.2011.06.009
Nagy G, Pinter G, Kohut G, Adam AL, Trencsenyi G, Hornok L, Banfalvi G (2010) Time-lapse analysis of cell death in mammalian and fungal cells. DNA Cell Biol 29(5):249–259. doi:10.1089/dna.2009.0980
Radford DR, Challacombe SJ, Walter JD (1998) Adherence of phenotypically switched Candida albicans to denture base materials. Int J Prosthodont 11(1):75–81
Radford DR, Challacombe SJ, Walter JD (1999) Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 10(1):99–116. doi:10.1177/10454411990100010501
Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6(7):979–986. doi:10.1111/j.1567-1364.2006.00117.x
Sabouraud R (1910) Les teignes. Masson et Cie, Paris, France
Sobel JD, Myers PG, Kaye D, Levison ME (1981) Adherence of Candida albicans to human vaginal and buccal epithelial cells. J Infect Dis 143(1):76–82. doi:10.1093/infdis/143.1.76
Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9(10):737–748. doi:10.1038/nrmicro2636
Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12(7):317–324. doi:10.1016/j.tim.2004.05.008
Tam JM, Castro CE, Heath RJ, Mansour MK, Cardenas ML, Xavier RJ, Lang MJ, Vyas JM (2011) Use of an optical trap for study of host-pathogen interactions for dynamic live cell imaging. J Vis Exp 53:e3123. doi:10.3791/3123
Tronchin G, Bouchara JP, Robert R, Senet JM (1988) Adherence of Candida albicans germ tubes to plastic: ultrastructural and molecular studies of fibrillar adhesins. Infect Immun 56(8):1987–1993
Tronchin G, Bouchara JP, Robert R (1989) Dynamic changes of the cell wall surface of Candida albicans associated with germination and adherence. Eur J Cell Biol 50(2):285–290
von Fraunhofer JA, Loewy ZG (2009) Factors involved in microbial colonization of oral prostheses. Gen Dent 57(2):136–143; ibid. 144–135
Whiteway M (2000) Transcriptional control of cell type and morphogenesis in Candida albicans. Curr Opin Microbiol 3(6):582–588. doi:10.1016/S1369-5274(00)00144-2
Zheng X, Wang Y (2004) Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23(8):1845–1856. doi:10.1038/sj.emboj.7600195
Acknowledgements
Thanks are due to Prof. Alexander Johnson (Department of Biochemistry and Biophysics, University of California, San Francisco, USA) for the QMY23 and to Prof. Yue Wang (Institute of Molecular and Cell Biology, Singapore, Singapore) for the WYZ12.1 and WYZ12.2C. albicans strains. This work was supported by the OTKA grant K108989 and by the UD Faculty of Medicine Research Fund (Bridging Fund 2012) to VD, TÁMOP 4.2.1/B-09/1/KONV-2010-0007 to IP, as well as by TÁMOP 4.2.4. A/2-11-1-2012-0001 National Excellence Program that was subsidized by the European Union and co-financed by the European Social Fund to GN and KP. GWH is supported by grants from the National Center for Research Resources (5P20RR018751-09) and the National Institute of General Medical Sciences (8 P20 GM103513-09) from the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 24 kb)
(AVI 29,865 kb)
(AVI 30,469 kb)
(AVI 29,044 kb)
(AVI 51,190 kb)
(AVI 20,806 kb)
(AVI 29,909 kb)
(AVI 22,989 kb)
Rights and permissions
About this article
Cite this article
Nagy, G., Hennig, G.W., Petrenyi, K. et al. Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl Microbiol Biotechnol 98, 5185–5194 (2014). https://doi.org/10.1007/s00253-014-5696-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-5696-5
Keywords
- Candida albicans
- Quorum-sensing molecules
- Genetic mutations
- Yeast cell adherence
- Hyphae outgrowth
- Image analysis