Skip to main content
Log in

A disk-diffusion-based target identification platform for antibacterials (TIPA): an inducible assay for profiling MOAs of antibacterial compounds

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One of the challenges in antibiotic lead discovery is the difficulty and time-consuming task of determining the mechanism of action (MOA) of antibacterial compounds. In this report, we describe the development and validation of a facile and inexpensive assay system utilizing disk diffusion of inhibitors on solid agar medium embedded with mixed pools of a comprehensive collection of Escherichia coli clones each containing a plasmid-borne inducible essential gene from E. coli. From individual clones, pilot small-scale (48 or 50 clones) assays, to full-scale target identification platform for antibacterials (TIPA) system, involving a variety of assay formats (liquid vs solid media, individual vs mix clones), we demonstrate that elevated resistance phenotypes of relevant cell clones were highly specific. In particular, the TIPA system was able to reveal cellular targets of several known antibacterial inhibitors: cerulenin, diazaborine, indolmycin, phosphomycin, and triclosan. Complementary to several existing MOA profiling schemes, the TIPA system offers a simple and low-cost method for elucidating the target proteins of antibacterial inhibitors, thus will facilitate discovery and development of novel antibacterial compounds to combat multidrug-resistant bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1474

    Article  CAS  PubMed  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12

    Article  PubMed  Google Scholar 

  • Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D (2013) 10 × ′20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56(12):1685–1694

    Article  PubMed  Google Scholar 

  • Butcher RA, Bhullar BS, Perlstein EO, Marsischky G, LaBaer J, Schreiber SL (2006) Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nat Chem Biol 2(2):103–109

    Article  CAS  PubMed  Google Scholar 

  • Chopra I (1998) Over-expression of target genes as a mechanism of antibiotic resistance in bacteria. J Antimicrob Chemother 41(6):584–588

    Article  CAS  PubMed  Google Scholar 

  • Chopra I, Brennan P (1997) Molecular action of anti-mycobacterial agents. Tuber Lung Dis 78(2):89–98

    Article  CAS  PubMed  Google Scholar 

  • Chung GA, Aktar Z, Jackson S, Duncan K (1995) High-throughput screen for detecting antimycobacterial agents. Antimicrob Agents Chemother 39(10):2235–2238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9(1):91–99

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Jacob F (1959) Inhibition of the synthesis of the enzymes participating in the formation of tryptophan in Escherichia coli. C R Hebd Seances Acad Sci 248(24):3490–3492

    CAS  PubMed  Google Scholar 

  • de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A, Cruaud C, Samair S, Lechaplais C, Gyapay G, Richez C, Durot M, Kreimeyer A, Le Fevre F, Schachter V, Pezo V, Doring V, Scarpelli C, Medigue C, Cohen GN, Marliere P, Salanoubat M, Weissenbach J (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 4:174

    Article  PubMed Central  PubMed  Google Scholar 

  • De La Fuente R, Sonawane ND, Arumainayagam D, Verkman AS (2006) Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high-throughput screening. Br J Pharmacol 149(5):551–559

    Article  Google Scholar 

  • Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN (2007) Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 58(2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Donald RG, Skwish S, Forsyth RA, Anderson JW, Zhong T, Burns C, Lee S, Meng X, LoCastro L, Jarantow LW, Martin J, Lee SH, Taylor I, Robbins D, Malone C, Wang L, Zamudio CS, Youngman PJ, Phillips JW (2009) A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. Chem Biol 16(8):826–836

    Article  CAS  PubMed  Google Scholar 

  • Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM, C KG, King P, McCarthy M, Malone C, Misiner B, Robbins D, Tan Z, Zhu Zy ZY, Carr G, Mosca DA, Zamudio C, Foulkes JG, Zyskind JW (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43(6):1387–1400

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA 3rd, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403

    Article  CAS  PubMed  Google Scholar 

  • Freiberg C, Fischer HP, Brunner NA (2005) Discovering the mechanism of action of novel antibacterial agents through transcriptional profiling of conditional mutants. Antimicrob Agents Chemother 49(2):749–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • French CT, Lao P, Loraine AE, Matthews BT, Yu H, Dybvig K (2008) Large-scale transposon mutagenesis of Mycoplasma pulmonis. Mol Microbiol 69(1):67–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–5684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heerding DA, Christmann LT, Clark TJ, Holmes DJ, Rittenhouse SF, Takata DT, Venslavsky JW (2003) New benzylidenethiazolidinediones as antibacterial agents. Bioorg Med Chem Lett 13(21):3771–3773

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Tambyah PA, Paterson DL (2010) Multiresistant Gram-negative infections: a global perspective. Curr Opin Infect Dis 23(6):546–553

    Article  PubMed  Google Scholar 

  • Ji Y, Zhang B, Van SF, Horn, Warren P, Woodnutt G, Burnham MK, Rosenberg M (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293(5538):2266–2269

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT (1996) Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35(15):4923–4928

    Article  CAS  PubMed  Google Scholar 

  • Kitabatake M, Ali K, Demain A, Sakamoto K, Yokoyama S, Soll D (2002) Indolmycin resistance of Streptomyces coelicolor A3(2) by induced expression of one of its two tryptophanyl-tRNA synthetases. J Biol Chem 277(26):23882–23887

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12(5):291–299

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100(8):4678–4683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause M, Ruckert B, Lurz R, Messer W (1997) Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein. J Mol Biol 274(3):365–380

    Article  CAS  PubMed  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O’Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  CAS  PubMed  Google Scholar 

  • Lange RP, Locher HH, Wyss PC, Then RL (2007) The targets of currently used antibacterial agents: lessons for drug discovery. Curr Pharm Des 13(30):3140–3154

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zolli-Juran M, Cechetto JD, Daigle DM, Wright GD, Brown ED (2004) Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol 11(10):1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Linares J, Ardanuy C, Pallares R, Fenoll A (2010) Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period. Clin Microbiol Infect 16(5):402–410

    Article  CAS  PubMed  Google Scholar 

  • McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394(6693):531–532

    Article  CAS  PubMed  Google Scholar 

  • Nonejuie P, Burkart M, Pogliano K, Pogliano J (2013) Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 110(40):16169–16174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pathania R, Zlitni S, Barker C, Das R, Gerritsma DA, Lebert J, Awuah E, Melacini G, Capretta FA, Brown ED (2009) Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nat Chem Biol 5(11):849–856

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299(5615):2071–2074

    Article  CAS  PubMed  Google Scholar 

  • Reitz RH, Slade HD, Neuhaus FC (1967) The biochemical mechanisms of resistance by streptococci to the antibiotics d-cycloserine and O-carbamyl-d-serine. Biochemistry 6(8):2561–2570

    Article  CAS  PubMed  Google Scholar 

  • Rouse DA, Li Z, Bai GH, Morris SL (1995) Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 39(11):2472–2477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M, Snyder M (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21(5):601–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, Musser JM, Jacobs WR Jr (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3(5):567–570

    Article  CAS  PubMed  Google Scholar 

  • Thanassi JA, Hartman-Neumann SL, Dougherty TJ, Dougherty BA, Pucci MJ (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30(14):3152–3162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokunaga M, Loranger JM, Wu HC (1983) Isolation and characterization of an Escherichia coli clone overproducing prolipoprotein signal peptidase. J Biol Chem 258(20):12102–12105

    CAS  PubMed  Google Scholar 

  • Werner RG, Thorpe LF, Reuter W, Nierhaus KH (1976) Indolmycin inhibits prokaryotic tryptophanyl-tRNA ligase. Eur J Biochem 68(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Xu HH, Real L, Bailey MW (2006) An array of Escherichia coli clones over-expressing essential proteins: a new strategy of identifying cellular targets of potent antibacterial compounds. Biochem Biophys Res Commun 349(4):1250–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu HH, Trawick JD, Haselbeck RJ, Forsyth RA, Yamamoto RT, Archer R, Patterson J, Allen M, Froelich JM, Taylor I, Nakaji D, Maile R, Kedar GC, Pilcher M, Brown-Driver V, McCarthy M, Files A, Robbins D, King P, Sillaots S, Malone C, Zamudio CS, Roemer T, Wang L, Youngman PJ, Wall D (2010) Staphylococcus aureus TargetArray: comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials. Antimicrob Agents Chemother 54(9):3659–3670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young K, Jayasuriya H, Ondeyka JG, Herath K, Zhang C, Kodali S, Galgoci A, Painter R, Brown-Driver V, Yamamoto R, Silver LL, Zheng Y, Ventura JI, Sigmund J, Ha S, Basilio A, Vicente F, Tormo JR, Pelaez F, Youngman P, Cully D, Barrett JF, Schmatz D, Singh SB, Wang J (2006) Discovery of FabH/FabF inhibitors from natural products. Antimicrob Agents Chemother 50(2):519–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project has been provided by grants from the U.S. Department of Defense’s Army Research Office (W911NF-12-1-0059), NIH (S3GM083686), and CSUPERB (California State University Program for Education and Research in Biotechnology) (Entrepreneurial Joint Venture Matching grant) to H. H. Xu. I. Silva and M. S. Ward acknowledge scholarship support from the NIH Minority Biomedical Research Support-Research Initiative for Scientific Enhancement (MBRS-RISE) Program (5R25GM061331). Technical assistance from Walfre Martinez, Jere Wilson, Marlyn Rios, David Yang, Deisy Contreras, Peter Chong, Sonya Valentine, and Christopher Lam is greatly appreciated. We are grateful to Nara Institute of Science and Technology (Nara, Japan) for generously providing the E. coli essential gene overexpression clones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Howard Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, I., Real, L.J., Ward, M.S. et al. A disk-diffusion-based target identification platform for antibacterials (TIPA): an inducible assay for profiling MOAs of antibacterial compounds. Appl Microbiol Biotechnol 98, 5551–5566 (2014). https://doi.org/10.1007/s00253-014-5623-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5623-9

Keywords

Navigation