Is aceticlastic methanogen composition in full-scale anaerobic processes related to acetate utilization capacity?

Abstract

In this study, biomass samples were obtained from six municipal and nine industrial full-scale anaerobic processes to investigate whether the aceticlastic methanogen population composition is related to acetate utilization capacity and the nature of the wastewater treated, i.e. municipal sludge or industrial wastewater. Batch serum bottle tests were used to determine the specific acetate utilization rate (AUR), and a quantitative real-time polymerase chain reaction protocol was used to enumerate the acetate-utilizing Methanosaeta and Methanosarcina populations in the biomass samples. Methanosaeta was the dominant aceticlastic methanogen in all samples, except for one industrial wastewater-treating anaerobic process. However, Methanosarcina density in industrial biomass samples was higher than the Methanosarcina density in the municipal samples. The average AUR values of municipal and industrial wastewater treatment plant biomass samples were 10.49 and 10.65 mg CH3COO/log(aceticlastic methanogen gene copy).d, respectively. One-way ANOVA test and principle component analysis showed that the acetate utilization capacities and aceticlastic methanogen community composition did not show statistically significant correlation among the municipal digesters and industrial wastewater-treating processes investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahring B, Sandberg M, Angelidaki I (1995) Volatile fatty-acids as indicators of process imbalance is anaerobic digesters. Appl Microbiol Biotechnol 43(3):559–565

    CAS  Article  Google Scholar 

  2. APHA, AWWA, WEF (1995) Standard methods for the examination of water and wastewaters, 19th edn. American Public Health Association, Washington

    Google Scholar 

  3. Bialek K, Kim J, Lee C, Collins G, Mahony T, O’Flaherty V (2011) Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Res 45(3):1298–1308

    CAS  PubMed  Article  Google Scholar 

  4. Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia. Environ Technol 26(1):85–91

    CAS  PubMed  Article  Google Scholar 

  5. Chapman T, Stensel H, Ferguson JF (2007) Anaerobic digester operating conditions affects acetate utilization capacity. Proc Water Environ Fed 2007(3):1047–1073

    Article  Google Scholar 

  6. Chynoweth DP, Svoronos SA, Lyberatos G, Harman JL, Pullammanappallil P, Owens JM, Peck MJ (1994) Real-time expert-system control of anaerobic-digestion. Water Sci Technol 30(12):21–29

    CAS  Google Scholar 

  7. Conklin A (2004) Acetoclastic methanogenesis: a key to anaerobic digester stability. Dissertation, University of Washington, Seattle, WA

  8. Conklin A, Stensel H, Ferguson J (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78(5):486–496

    CAS  PubMed  Article  Google Scholar 

  9. Conklin AS, Chapman T, Zahller JD, Stensel HD, Ferguson JF (2008) Monitoring the role of aceticlasts in anaerobic digestion: activity and capacity. Water Res 42(20):4895–4904

    CAS  PubMed  Article  Google Scholar 

  10. Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Meth 56(1):3–15

    CAS  Article  Google Scholar 

  11. Duran M (1996) High concentrations of degradable organics in the effluent of anaerobic processes and their remediation. Dissertation, Vanderbilt University, Nashville, TN

  12. Elferink S, Visser A, Pol L, Stams A (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15(2–3):119–136

    Google Scholar 

  13. Ferry J (1992) Methane from acetate. J Bacteriol 174(17):5489–5495

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic-digestion. Water Sci Technol 15(8–9):127–167

    CAS  Google Scholar 

  15. Guwy A, Hawkes F, Wilcox S, Hawkes D (1997) Neural network and on-off control of bicarbonate alkalinity in a fluidised-bed anaerobic digester. Water Res 31(8):2019–2025

    CAS  Article  Google Scholar 

  16. Jeris J, McCarty P (1965) The biochemistry of methane fermentation using C14 tracers. J Water Pollut Control Fed 37(2):178–192

    CAS  Google Scholar 

  17. Jetten M, Stams A, Zehnder A (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73(4):339–344

    CAS  Article  Google Scholar 

  18. Jetten M, Stams A, Zehnder A (1992) Methanogenesis from acetate—a comparison of the acetate metabolism in Methanothrix-soehngenii and Methanosarcina spp. FEMS Microbiol Lett 88(3–4):181–197

    CAS  Article  Google Scholar 

  19. Karakashev D, Batstone D, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72(7):5138–5141

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Lange M, Tolker-Nielsen T, Molin S, Ahring B (2000) In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells. Appl Environ Microbiol 66(5):1796–1800

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Leclerc M, Delgenes J, Godon J (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6(8):809–819

    CAS  PubMed  Article  Google Scholar 

  23. Liu C, Yuan X, Zeng G, Li W, Li J (2008) Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol 99(4):882–888

    CAS  PubMed  Article  Google Scholar 

  24. McCarty PL (1972) Stoichiometry of biological reactions, presented at the International Conference, Toward a Unified Concept of Biological Waste Treatment Design, Atlanta, GA

  25. McHugh S, Collins G, Mahony T, O’Flaherty V (2005) Biofilm reactor technology for low temperature anaerobic waste treatment: microbiology and process characteristics. Water Sci Technol 52(7):107–113

    CAS  Google Scholar 

  26. Min H, Zinder S (1989) Kinetics of acetate utilization by 2 thermophilic acetotrophic methanogens—Methanosarcina sp strain cals-1 and Methanothrix sp strain CALS-1. Appl Environ Microbiol 55(2):488–491

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Mladenovska Z, Ahring B (2000) Growth kinetics of thermophilic Methanosarcina spp. isolated from full-scale biogas plants treating animal manures. FEMS Microbiol Ecol 31(3):225–229

    CAS  PubMed  Article  Google Scholar 

  28. Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18(3):273–278

    CAS  PubMed  Article  Google Scholar 

  29. Ohtsubo S, Demizu K, Kohno S, Miura I, Ogawa T, Fukuda H (1992) Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix-soehngenii. Appl Environ Microbiol 58(2):703–705

    CAS  PubMed Central  PubMed  Google Scholar 

  30. O’Reilly J, Lee C, Collins G, Chinalia F, Mahony T, O’Flaherty V (2009) Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims. Water Res 43(14):3365–3374

    PubMed  Article  Google Scholar 

  31. Owen W, Stuckey D, Healy J, Young L, McCarty P (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13(6):485–492

    CAS  Article  Google Scholar 

  32. Parkin BG, Owen WF (1987) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112(5):867–920

    Article  Google Scholar 

  33. Petersen SP, Ahring BK (1991) Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol Ecol 86(2):149–158

    CAS  Article  Google Scholar 

  34. Pullammanappallil P, Harmon J, Chynoweth D, Lyberatos G, Svoronos S (1991) Avoiding digester imbalance through real-time expert system control of dilution rate. Appl Biochem Biotechnol 28–29:33–42

    PubMed  Article  Google Scholar 

  35. Raskin L, Amann R, Poulsen L, Rittmann B, Stahl D (1995) Use of ribosomal RNA-based molecular probes for characterization of complex microbial communities in anaerobic biofilms. Water Sci Technol 31(1):261–272

    CAS  Article  Google Scholar 

  36. Schmidt J, Mladenovska Z, Lange M, Ahring B (2000) Acetate conversion in anaerobic biogas reactors: traditional and molecular tools for studying this important group of anaerobic microorganisms. Biodegradation 11(6):359–364

    CAS  PubMed  Article  Google Scholar 

  37. Schnurer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29(3):249–261

    CAS  Article  Google Scholar 

  38. Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96(6):547–558

    CAS  PubMed  Article  Google Scholar 

  39. Smith P, Mah R (1966) Kinetics of acetate metabolism during sludge digestion. Appl Environ Microbiol 14(3):368–371

    CAS  Google Scholar 

  40. Sorensen A, Ahring B (1993) Measurements of the specific methanogenic activity of anaerobic digester biomass. Appl Microbiol Biotechnol 40(2–3):427–431

    Google Scholar 

  41. Speece R (1988) A survey of municipal anaerobic sludge digesters and diagnostic activity assays. Water Res 22(3):365–372

    CAS  Article  Google Scholar 

  42. Speece RE (2008) Anaerobic biotechnology and odor/corrosion control for municipalities and industries: corrosion control. Archae Press, Nashville

    Google Scholar 

  43. Steyer J, Buffiere P, Rolland D, Moletta R (1999) Advanced control of anaerobic digestion processes through disturbances monitoring. Water Res 33(9):2059–2068

    CAS  Article  Google Scholar 

  44. Switzenbaum M, Giraldogomez E, Hickey R (1990) Monitoring of the anaerobic methane fermentation process. Enzym Microb Technol 12(10):722–730

    CAS  Article  Google Scholar 

  45. Takashima M (1987) Nutrient requirements for high rate conversion of acetate to methane. Dissertation, Drexel University, Philadelphia, PA

  46. Van Lier J, Mahmoud N, Zeeman G (2008) Biological wastewater treatment: principles, modelling and design. In: Henze M, van Loosdrecht M, Ekama G, Brdjanovic D (eds) IWA Pub

  47. Vavilin V, Qu X, Mazeas L, Lemunier M, Duquennoi C, He P, Bouchez T (2008) Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 94(4):593–605

    CAS  Article  Google Scholar 

  48. Zahller J, Bucher R, Ferguson J, Stensel H (2007) Performance and stability of two-stage anaerobic digestion. Water Environ Res 79(5):488–497

    CAS  PubMed  Article  Google Scholar 

  49. Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    CAS  Article  Google Scholar 

  50. Zinder S, Mah R (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38(5):996–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Zinder S, Sowers K, Ferry J (1985) Methanosarcina-thermophila sp-nov, a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 35(4):522–523

    Article  Google Scholar 

  52. Zitomer D, Speece R (1995) Methanethiol in nonacclimated sewage-sludge after addition of chloroform and other toxicants. Environ Sci Technol 29(3):762–768

    CAS  PubMed  Article  Google Scholar 

  53. Zitomer D, Johnson C, Speece R (2008) Metal stimulation and municipal digester thermophilic/mesophilic activity. J Environ Eng 134(1):42–47

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to late Dr. John F. Ferguson and his research group from the Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, for kindly providing the plasmids with the target genes for Methanosaeta and Methanosarcina. We also thank Dr. Daniel Zitomer and Dr. Kaushik Venkiteshwaran from the Department of Civil and Environmental Engineering, Marquette University, Milwaukee, for the supply of biomass samples P and R. Dr. Vedat Yilmaz and Dr. Ebru Ince-Yilmaz were visiting scholars at Villanova. Dr. Vedat Yilmaz was supported by a scholarship from The Scientific and Technological Research Council of Turkey. Partial funding for this study was provided by Villanova Center for Advancement of Sustainability in Engineering.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Metin Duran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yilmaz, V., Ince-Yilmaz, E., Yilmazel, Y.D. et al. Is aceticlastic methanogen composition in full-scale anaerobic processes related to acetate utilization capacity?. Appl Microbiol Biotechnol 98, 5217–5226 (2014). https://doi.org/10.1007/s00253-014-5597-7

Download citation

Keywords

  • Anaerobic treatment
  • Acetate utilization capacity
  • Aceticlastic methanogenesis
  • Methanosaeta
  • Methanosarcina