Applied Microbiology and Biotechnology

, Volume 98, Issue 10, pp 4723–4736 | Cite as

Microbial biogeography across a full-scale wastewater treatment plant transect: evidence for immigration between coupled processes

  • George F. Wells
  • Cindy H. Wu
  • Yvette M. Piceno
  • Brad Eggleston
  • Eoin L. Brodie
  • Todd Z. DeSantis
  • Gary L. Andersen
  • Terry C. Hazen
  • Christopher A. Francis
  • Craig S. Criddle
Environmental biotechnology

Abstract

Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2 entering the reactor from an upstream trickling filter. Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2 production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct “Nitrosomonas-like” lineage dominated in activated sludge. Prior time series indicated that this “Nitrosomonas-like” lineage was dominant when NO2 levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2 levels were high. This is consistent with the hypothesis that NO2 production may cooccur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community via the trickling filter effluent to the activated sludge bioreactor. Our results provide compelling evidence that substantial immigration between coupled process units occurs and may exert significant influence over microbial community dynamics within staged bioreactors.

Keywords

Activated sludge Ammonia-oxidizing bacteria Immigration PhyloChip Sloughing Trickling filter 

Supplementary material

253_2014_5564_MOESM1_ESM.pdf (531 kb)
ESM 1(PDF 530 kb)

References

  1. Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Con F 48(5):835–852Google Scholar
  2. Brenner DJ, Farmer JJ III (2001) Family I. Enterobacteriaceae. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey's manual of systematic bacteriology, vol 2, 2nd edn. Springer, New YorkGoogle Scholar
  3. Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104(1):299–304PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8(11):1175–1182PubMedCrossRefGoogle Scholar
  5. Curtis TP, Head IM, Graham DW (2003) Theoretical ecology for engineering biology. Environ Sci Technol 37(3):64A–70APubMedCrossRefGoogle Scholar
  6. Elenter D, Milferstedt K, Zhang W, Hausner M, Morgenroth E (2007) Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm. Water Res 41(20):4657–4671PubMedCrossRefGoogle Scholar
  7. Gray ND, Miskin IP, Kornilova O, Curtis TP, Head IM (2002) Occurrence and activity of archaea in aerated activated sludge wastewater treatment plants. Environ Microbiol 4(3):158–168PubMedCrossRefGoogle Scholar
  8. Jarrell KF (1985) Extreme oxygen sensitivity in methanogenic archaebacteria. Bioscience 35(5):298–302CrossRefGoogle Scholar
  9. Jones SE, McMahon KD (2009) Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environ Microbiol 11(4):905–913PubMedCrossRefGoogle Scholar
  10. Jones SE, Newton RJ, McMahon KD (2008) Potential for atmospheric deposition of bacteria to influence bacterioplankton communities. FEMS Microbiol Ecol 64(3):388–394PubMedCrossRefGoogle Scholar
  11. Kendall MM, Boone DR (2006) The order Methanosarcinales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 3, 3rd edn. Springer Science + Business Media, LLC, pp 244–256CrossRefGoogle Scholar
  12. Kissel JC, McCarty PL, Street RL (1984) Numerical simulation of mixed-culture biofilm. J Environ Eng 110(2):393–411CrossRefGoogle Scholar
  13. Koops HP, Pommerening-Roser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37(1):1–9CrossRefGoogle Scholar
  14. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7(7):601–613CrossRefGoogle Scholar
  15. Lindström ES, Bergström A-K (2004) Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnol Oceanogr 49(1):125–136CrossRefGoogle Scholar
  16. Lindström ES, Forslund M, Algesten G, Bergström A-K (2006) External control of bacterial community structure in lakes. Limnol Oceanogr 51(1):339–342CrossRefGoogle Scholar
  17. Morgenroth E (2003) Detachment: an often overlooked phenomenon in biofilm research and modeling. In: Wuertz S, Wilderer PA, Bishop PL (eds) Biofilms in Wastewater Treatment: An Interdisciplinary Approach. IWA Publishing, London, pp 264–290Google Scholar
  18. Morgenroth E, Wilderer PA (2000) Influence of detachment mechanisms on competition in biofilms. Water Res 34(2):417–426CrossRefGoogle Scholar
  19. Ofiteru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, Sloan WT (2010) Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci U S A 107(35):15345–15350PubMedCentralPubMedCrossRefGoogle Scholar
  20. Okabe S, Hirata K, Watanabe Y (1995) Dynamic changes in spatial microbial distribution in mixed-population biofilms: experimental results and model simulation. Water Sci Technol 32(8):67–74CrossRefGoogle Scholar
  21. Park HD, Noguera DR (2007) Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. J Appl Microbiol 102(5):1401–1417PubMedCrossRefGoogle Scholar
  22. Rittmann BE, Laspidou CS (2003) Biofilm detachment. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New YorkGoogle Scholar
  23. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill Higher Education, New YorkGoogle Scholar
  24. Shannon KE, Lee DY, Trevors JT, Beaudette LA (2007) Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci Total Environ 382(1):121–129PubMedCrossRefGoogle Scholar
  25. Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12(1):1–20CrossRefGoogle Scholar
  26. Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8(4):732–740PubMedCrossRefGoogle Scholar
  27. Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41(1):111–117. doi:10.1002/bit.260410115 PubMedCrossRefGoogle Scholar
  28. Tchobanoglous G, Burton FL, Stensel HD (2002) Wastewater engineering: treatment and reuse. McGraw-Hill, New YorkGoogle Scholar
  29. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99(10):6567–6572PubMedCentralPubMedCrossRefGoogle Scholar
  30. Wanner O, Gujer W (1986) A multispecies biofilm model. Biotechnol Bioeng 28(3):314–328PubMedCrossRefGoogle Scholar
  31. Wells GF (2011) Reexamining the engineered nitrogen cycle: microbial diversity, community dynamics, and immigration in nitrifying activated sludge bioreactors. Ph.D. Thesis. Stanford University: Stanford, CA, USAGoogle Scholar
  32. Wells GF, Park H-D, Yeung C-H, Eggleston B, Francis CA, Criddle CS (2009) Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ Microbiol 11(9):2310–2328PubMedCrossRefGoogle Scholar
  33. Wells GF, Park H-D, Eggleston B, Francis CA, Criddle CS (2011) Fine-scale bacterial community dynamics and the taxa-time relationship within a full-scale activated sludge bioreactor. Water Res 45(17):5476–5488PubMedCrossRefGoogle Scholar
  34. Wéry N, Lhoutellier C, Ducray F, Delgenès J-P, Godon J-J (2008) Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res 42(1–2):53–62PubMedCrossRefGoogle Scholar
  35. Wittebolle L, Boon N, Vanparys B, Heylen K, De Vos P, Verstraete W (2005) Failure of the ammonia oxidation process in two pharmaceutical wastewater treatment plants is linked to shifts in the bacterial communities. J Appl Microbiol 99(5):997–1006PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • George F. Wells
    • 1
    • 8
  • Cindy H. Wu
    • 2
  • Yvette M. Piceno
    • 2
  • Brad Eggleston
    • 3
  • Eoin L. Brodie
    • 2
  • Todd Z. DeSantis
    • 2
    • 4
  • Gary L. Andersen
    • 2
  • Terry C. Hazen
    • 5
    • 6
  • Christopher A. Francis
    • 7
  • Craig S. Criddle
    • 1
  1. 1.Civil and Environmental EngineeringStanford UniversityStanfordUSA
  2. 2.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Palo Alto Regional Water Quality Control PlantPalo AltoUSA
  4. 4.Second Genome, Inc.San FranciscoUSA
  5. 5.Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA
  6. 6.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  7. 7.Environmental Earth System ScienceStanford UniversityStanfordUSA
  8. 8.Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations