Skip to main content

O-antigen polymerase adopts a distributive mechanism for lipopolysaccharide biosynthesis

An Erratum to this article was published on 02 April 2014

Abstract

Bacterial lipopolysaccharide (LPS) is an essential cell envelope component for gram-negative bacteria. As the most variable region of LPS, O antigens serve as important virulence determinants for many bacteria and represent a promising carbohydrate source for glycoconjugate vaccines. In the Wzy-dependent O-antigen biosynthetic pathway, the integral membrane protein Wzy was shown to be the sole enzyme responsible for polymerization of O-repeat unit. Its catalytic mechanism, however, remains elusive. Herein, Wzy was successfully overexpressed in Escherichia coli with an N-terminal His10-tag. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed that the Wzy protein exists in its native confirmation as a dimer. Subsequently, we chemo-enzymatically synthesized the substrates of Wzy, the lipid-PP-linked repeat units. Together with an optimized O-antigen visualization method, we monitored the production of reaction intermediates at varying times. We present here our result as the first biochemical evidence that Wzy functions in a distributive manner.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arinaminpathy Y, Khurana E, Engelman DM, Gerstein MB (2009) Computational analysis of membrane proteins: the largest class of drug targets. Drug Discov Today 14(23–24):1130–1135. doi:10.1016/j.drudis.2009.08.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18(5):581–586. doi:10.1016/j.sbi.2008.07.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chng SS, Xue M, Garner RA, Kadokura H, Boyd D, Beckwith J, Kahne D (2012) Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 337(6102):1665–1668. doi:10.1126/science.1227215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daniels C, Vindurampulle C, Morona R (1998) Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28(6):1211–1222

    Article  CAS  PubMed  Google Scholar 

  • Daniels C, Griffiths C, Cowles B, Lam JS (2002) Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ Microbiol 4(12):883–897

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis PL, Oatman LC, Gay DF (2003) Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J Biol Chem 278(37):35199–35203. doi:10.1074/jbc.M306431200

    Article  CAS  PubMed  Google Scholar 

  • Duda KA, Lindner B, Brade H, Leimbach A, Brzuszkiewicz E, Dobrindt U, Holst O (2011) The lipopolysaccharide of the mastitis isolate Escherichia coli strain 1303 comprises a novel O-antigen and the rare K-12 core type. Microbiology 157(Pt 6):1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Greenfield LK, Richards MR, Li J, Wakarchuk WW, Lowary TL, Whitfield C (2012) Biosynthesis of the polymannose lipopolysaccharide O antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multi-active site mannosyltransferases. J Biol Chem. doi:10.1074/jbc.M112.401000

    Google Scholar 

  • Guo H, Yi W, Shao J, Lu Y, Zhang W, Song J, Wang PG (2005) Molecular analysis of the O-antigen gene cluster of Escherichia coli O86:B7 and characterization of the chain length determinant gene (wzz). Appl Environ Microbiol 71(12):7995–8001. doi:10.1128/AEM.71.12.7995-8001.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han W, Wu B, Li L, Zhao G, Woodward R, Pettit N, Cai L, Thon V, Wang PG (2012) Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J Biol Chem 287(8):5357–5365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, Feldman MF (2010) Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog 6(3):e1000819

    Article  PubMed Central  PubMed  Google Scholar 

  • Ihssen J, Kowarik M, Dilettoso S, Tanner C, Wacker M, Thony-Meyer L (2010) Production of glycoprotein vaccines in Escherichia coli. Microb Cell Factories 9:61. doi:10.1186/1475-2859-9-61

    Article  Google Scholar 

  • Islam ST, Taylor VL, Qi M, Lam JS (2010) Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. MBio 1(3)

  • Kim TH, Sebastian S, Pinkham JT, Ross RA, Blalock LT, Kasper DL (2010) Characterization of the O-antigen polymerase (Wzy) of Francisella tularensis. J Biol Chem 285(36):27839–27849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. doi:10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324(5924):255–258. doi:10.1126/science.1170160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumari K, Weigel PH (1997) Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis. J Biol Chem 272(51):32539–32546

    Article  CAS  PubMed  Google Scholar 

  • Lerouge I, Vanderleyden J (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26(1):17–47

    Article  CAS  PubMed  Google Scholar 

  • Marolda CL, Tatar LD, Alaimo C, Aebi M, Valvano MA (2006) Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide O antigen. J Bacteriol 188(14):5124–5135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288(5):911–940. doi:10.1006/jmbi.1999.2700

    Article  CAS  PubMed  Google Scholar 

  • May JF, Splain RA, Brotschi C, Kiessling LL (2009) A tethering mechanism for length control in a processive carbohydrate polymerization. Proc Natl Acad Sci U S A 106(29):11851–11856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A 76(7):3116–3120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz N, Kahne D, Silhavy TJ (2009) Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol 7(9):677–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarz D, Dotsch V, Bernhard F (2008) Production of membrane proteins using cell-free expression systems. Proteomics 8(19):3933–3946. doi:10.1002/pmic.200800171

    Article  CAS  PubMed  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414

    Article  PubMed Central  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Sucher AJ, Chahine EB, Nelson M, Sucher BJ (2011) Prevnar 13, the new 13-valent pneumococcal conjugate vaccine. Ann Pharmacother 45(12):1516–1524. doi:10.1345/aph.1Q347

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walter AE, Turner DH, Kim J, Lyttle MH, Muller P, Mathews DH, Zuker M (1994) Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci U S A 91(20):9218–9222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Wang Q, Reeves PR (2010) The variation of O antigens in gram-negative bacteria. Subcell Biochem 53:123–152

    Article  CAS  PubMed  Google Scholar 

  • Wetter M, Kowarik M, Steffen M, Carranza P, Corradin G, Wacker M (2013) Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component. Glycoconj J 30(5):511–522. doi:10.1007/s10719-012-9451-9

    Article  CAS  PubMed  Google Scholar 

  • Wheatley RW, Zheng RB, Richards MR, Lowary TL, Ng KK (2012) Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial arabinogalactan. J Biol Chem 287(33):28132–28143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woodward R, Yi W, Li L, Zhao G, Eguchi H, Sridhar PR, Guo H, Song JK, Motari E, Cai L, Kelleher P, Liu X, Han W, Zhang W, Ding Y, Li M, Wang PG (2010) In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat Chem Biol 6(6):418–423. doi:10.1038/nchembio.351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yi W, Shao J, Zhu L, Li M, Singh M, Lu Y, Lin S, Li H, Ryu K, Shen J, Guo H, Yao Q, Bush CA, Wang PG (2005) Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J Am Chem Soc 127(7):2040–2041. doi:10.1021/ja045021y

    Article  CAS  PubMed  Google Scholar 

  • Yi W, Liu X, Li Y, Li J, Xia C, Zhou G, Zhang W, Zhao W, Chen X, Wang PG (2009) Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc Natl Acad Sci U S A 106(11):4207–4212. doi:10.1073/pnas.0812432106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S (2007) Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci U S A 104(13):5348–5353. doi:10.1073/pnas.0701160104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao G, Liu J, Liu X, Chen M, Zhang H, Wang PG (2007) Cloning and characterization of GDP-perosamine synthetase (Per) from Escherichia coli O157:H7 and synthesis of GDP-perosamine in vitro. Biochem Biophys Res Commun 363(3):525–530

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

P.G.W. acknowledges the NIH R01 GM085267 for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng George Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2,673 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, G., Wu, B., Li, L. et al. O-antigen polymerase adopts a distributive mechanism for lipopolysaccharide biosynthesis. Appl Microbiol Biotechnol 98, 4075–4081 (2014). https://doi.org/10.1007/s00253-014-5552-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5552-7

Keywords

  • Wzy
  • Integral membrane protein
  • Overexpression
  • Distributive mechanism