Skip to main content

Advertisement

Log in

High-level expression, purification, and characterization of bifunctional ScFv-9R fusion protein

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fibroblast growth factor receptor 3 (FGFR3) is a noted proto-oncogene involved in the pathogenesis of many tumors, so more and more studies focus on the potential use of receptor kinase inhibitor and therapeutic antibodies against FGFR3. In this study, we designed a novel fusion protein containing the single-chain Fv (ScFv) against FGFR3 and 9-arginine, denoted as ScFv-9R. To achieve the high-level production and soluble expression, ScFv and ScFv-9R were fused with small ubiquitin-related modifier (Sumo) by polymerase chain reaction and expressed in Escherichia coli BL21 (DE3). The recombinant bacteria was induced by 0.5 mM isopropyl-β-d-thiogalactopyranoside for 20 h at 20 °C; supernatants of Sumo-ScFv was harvested and purified by DEAE Sepharose FF and Ni-NTA orderly, and supernatants of Sumo-ScFv-9R was harvested and purified by Ni-NTA. After cleaved by the Sumo protease, the recombinant ScFv or ScFv-9R was released from the fusion protein, respectively. The purity of ScFv or ScFV-9R was shown to be higher than 90 %, and their yield reached 3–5 mg per liter of bacterial culture. In vitro data showed that ScFV-9R can attenuate the phosphorylation of FGFR3 and ERK in the absence or presence of FGF9. Gel retardation assay showed that 1 μg of ScFv-9R could efficiently bind to about 4 pmol siRNA. Fluorescent microscope analysis showed that ScFv-9R can efficiently bind and deliver siRNA into RT112 cells. In conclusion, we use Sumo fusion system to acquire high-level production, soluble expression, and bifunctional activity of ScFv-9R in E. coli. Our results also revealed that ScFv-9R, as a novel carrier, may have potential applications in antitumor studies and pharmaceutical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chung SS, Koh CJ (2013) Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling. Vitro Cell Dev Biol Anim 49(10):746–751

    Article  CAS  Google Scholar 

  • Di Martino E, Tomlinson DC, Knowles MA (2012) A decade of FGF receptor research in bladder cancer: past, present, and future challenges. AdvUrol 2012:429213

    Google Scholar 

  • Du X, Wang QR, Chan E, Merchant M, Liu J, French D, Ashkenazi A, Qing J (2012) FGFR3 stimulates stearoyl CoA desaturase 1 activity to promote bladder tumor growth. Cancer Res 72(22):5843–5855

    Article  CAS  PubMed  Google Scholar 

  • Glénisson M, Vacher S, Callens C, Susini A, Cizeron-Clairac G, Le Scodan R, Meseure D, Lerebours F, Spyratos F, Lidereau R, Bièche I (2012) Identification of new candidate therapeutic target genes in triple-negative breast cancer. Genes Cancer 3(1):63–70

    Article  PubMed Central  PubMed  Google Scholar 

  • Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13(1):52

    Article  PubMed Central  PubMed  Google Scholar 

  • Li X, Stuckert P, Bosch I, Marks JD, Marasco WA (2001) Single-chain antibody-mediated gene delivery into ErbB2-positive human breast cancer cells. Cancer Gene Ther 8(8):555–565

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen Y, Wu X, Li H, Jiang C, Tian H, Tang L, Wang D, Yu T, Li X (2012) SUMO fusion system facilitates soluble expression and high production of bioactive human fibroblast growth factor 23 (FGF23). Appl Microbiol Biotechnol 96(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15(1):182–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez-Torrecuadrada J, Cifuentes G, López-Serra P, Saenz P, Martínez A, Casal JI (2005) Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation. Clin Cancer Res 11(17):6280–6290

    Article  PubMed  Google Scholar 

  • Martínez-Torrecuadrada JL, Cheung LH, López-Serra P, Barderas R, Cañamero M, Ferreiro S, Rosenblum MG, Casal JI (2008) Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis. Mol Cancer Ther 7(4):862–873

    Article  PubMed  Google Scholar 

  • Plowright EE, Li Z, Bergsagel PL, Chesi M, Barber DL, Branch DR, Hawley RG, Stewart AK (2000) Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood 95(3):992–998

    CAS  PubMed  Google Scholar 

  • Qing J, Du X, Chen Y, Chan P, Li H, Wu P, Marsters S, Stawicki S, Tien J, Totpal K, Ross S, Stinson S, Dornan D, French D, Wang QR, Stephan JP, Wu Y, Wiesmann C, Ashkenazi A (2009) Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest 119(5):1216–1229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(6):709–717

    Article  CAS  PubMed  Google Scholar 

  • Sonvilla G, Allerstorfer S, Heinzle C, Stättner S, Karner J, Klimpfinger M, Wrba F, Fischer H, Gauglhofer C, Spiegl-Kreinecker S, Grasl-Kraupp B, Holzmann K, Grusch M, Berger W, Marian B (2010) Fibroblast growth factor receptor 3-IIIc mediates colorectal cancer growth and migration. Br J Cancer 102(7):1145–1156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trudel S, Stewart AK, Rom E, Wei E, Li ZH, Kotzer S, Chumakov I, Singer Y, Chang H, Liang SB, Yayon A (2006) The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood 107(10):4039–4046

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xiao Y, Fu L, Zhao H, Zhang Y, Wan X, Qin Y, Huang Y, Gao H, Li X (2010) High-level expression and purification of soluble recombinant FGF21 protein by SUMO fusion in Escherichia coli. BMC Biotechnol 10:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang W, Luo J, Xu L, Zeng J, Cao L, Dong J, Cai S (2013) Expression of scFv-Mel-Gal4 triple fusion protein as a targeted DNA-carrier in Escherichia coli. Cell Biochem Funct. doi:10.1002/cbf.2958

    Google Scholar 

  • Ware KE, Marshall ME, Heasley LR, Marek L, Hinz TK, Hercule P, Helfrich BA, Doebele RC, Heasley LE (2010) Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression. PLoS One 5(11):e14117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wen WH, Liu JY, Qin WJ, Zhao J, Wang T, Jia LT, Meng YL, Gao H, Xue CF, Jin BQ, Yao LB, Chen SY, Yang AG (2007) Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology 46(1):84–94

    Article  CAS  PubMed  Google Scholar 

  • Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437(2):199–213

    Article  CAS  PubMed  Google Scholar 

  • Yao YD, Sun TM, Huang SY, Dou S, Lin L, Chen JN, Ruan JB, Mao CQ, Yu FY, Zeng MS, Zang JY, Liu Q, Su FX, Zhang P, Lieberman J, Wang J, Song E (2012) Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. SciTransl Med 4(130):130ra48

    Google Scholar 

  • Ye Q, Hu H, Wang Z, Lu T, Hu Z, Zeng X, Zhang S, Liu J, Lei P, Wang CY, Ye Z, Shen G (2012) Generation and functional characterization of the anti-transferrin receptor single-chain antibody-GAL4 (TfRscFv-GAL4) fusion protein. BMC Biotechnol 12:91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.81370640), the key Science & technology funding of Jilin province (20130206003YY) and biopharmaceutical grant from Jilin provincial Science & technology department (20130727041YY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaokun Li or Yechen Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Xie, J., Sun, Y. et al. High-level expression, purification, and characterization of bifunctional ScFv-9R fusion protein. Appl Microbiol Biotechnol 98, 5499–5506 (2014). https://doi.org/10.1007/s00253-014-5541-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5541-x

Keywords

Navigation