Applied Microbiology and Biotechnology

, Volume 98, Issue 8, pp 3389–3399 | Cite as

Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology

  • Darko Balke
  • Claudia Wichert
  • Bettina Appel
  • Sabine Müller


Over the past two decades, RNA catalysis has become a major topic of research. On the one hand, naturally occurring ribozymes have been extensively investigated concerning their structure and functional mechanisms. On the other hand, the knowledge gained from these studies has been used to engineer ribozyme variants with novel properties. In addition to RNA engineering by means of rational design, powerful techniques for selection of ribozymes from large pools of random sequences were developed and have been widely used for the generation of functional nucleic acids. RNA as catalyst has been accompanied by DNA, and nowadays a large number of ribozymes and deoxyribozymes are available. The field of ribozyme generation and selection has been extensively reviewed. With respect to the field of biotechnology, RNA and DNA catalysts working on peptides or proteins, or which are designed to control protein synthesis, are of utmost importance and interest. Therefore, in this review, we will focus on engineered nucleic acid catalysts for peptide synthesis and modification as well as for intracellular control of gene expression.


DNAzyme Gene expression Peptide synthesis Ribozyme Regulation 


  1. Bessho Y, Hodgson DR, Suga H (2002) A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme. Nat Biotechnol 20(7):723–728. doi:10.1038/nbt0702-723 PubMedCrossRefGoogle Scholar
  2. Bramlage B, Luzi E, Eckstein F (1998) Designing ribozymes for the inhibition of gene expression. Trends Biotechnol 16(10):434–438PubMedCrossRefGoogle Scholar
  3. Brandsen BM, Hesser AR, Castner MA, Chandra M, Silverman SK (2013) DNA-catalyzed hydrolysis of esters and aromatic amides. J Am Chem Soc 135:16014–16017. doi:10.1021/ja4077233 PubMedCrossRefGoogle Scholar
  4. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harbor Perspectives in Biology 4(2):a003566. doi:10.1101/cshperspect.a003566 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1(4):223–229PubMedCrossRefGoogle Scholar
  6. Büttner L, Seikowski J, Wawrzyniak K, Ochmann A, Hobartner C (2013) Synthesis of spin-labeled riboswitch RNAs using convertible nucleosides and DNA-catalyzed RNA ligation. Bioorg Med Chem 21(20):6171–6180. doi:10.1016/j.bmc.2013.04.007 PubMedCrossRefGoogle Scholar
  7. Chandrasekar J, Silverman SK (2013) Catalytic DNA with phosphatase activity. Proc Natl Acad Sci U S A 110(14):5315–5320. doi:10.1073/pnas.1221946110 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen YY, Jensen MC, Smolke CD (2010) Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci U S A 107(19):8531–8536. doi:10.1073/pnas.1001721107 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cho EJ, Lee J-W, Rajendran M, Ellington AD (2008) Nucleic acids for reagentless biosensors. In: Ligler FS, Taitt CR (eds) Optical biosensors, 2nd edn. Elsevier, Amsterdam, pp 493–541. doi:10.1016/B978-044453125-4.50015-2 CrossRefGoogle Scholar
  10. Chumachenko NV, Novikov Y, Yarus M (2009) Rapid and simple ribozymic aminoacylation using three conserved nucleotides. J Am Chem Soc 131(14):5257–5263. doi:10.1021/ja809419f PubMedCentralPubMedCrossRefGoogle Scholar
  11. Coppins RL, Silverman SK (2004) A DNA enzyme that mimics the first step of RNA splicing. Nat Struct Mol Biol 11(3):270–274. doi:10.1038/nsmb727 PubMedCrossRefGoogle Scholar
  12. Drude I, Vauléon S, Müller S (2007) Twin ribozyme mediated removal of nucleotides from an internal RNA site. Biochem Biophys Res Commun 363(1):24–29. doi:10.1016/j.bbrc.2007.08.135 PubMedCrossRefGoogle Scholar
  13. Fujita Y, Ishikawa J, Furuta H, Ikawa Y (2010) Generation and development of RNA ligase ribozymes with modular architecture through “design and selection”. Molecules 15(9):5850–5865. doi:10.3390/molecules15095850 PubMedCrossRefGoogle Scholar
  14. Fusz S, Eisenfuhr A, Srivatsan SG, Heckel A, Famulok M (2005) A ribozyme for the aldol reaction. Chem Biol 12(8):941–950. doi:10.1016/j.chembiol.2005.06.008 PubMedCrossRefGoogle Scholar
  15. Goto Y, Suga H (2012) Flexizymes as a tRNA acylation tool facilitating genetic code reprogramming. Methods Mol Biol 848:465–478. doi:10.1007/978-1-61779-545-9_29 PubMedCrossRefGoogle Scholar
  16. Goto Y, Murakami H, Suga H (2008a) Initiating translation with D-amino acids. RNA 14(7):1390–1398. doi:10.1261/rna.1020708 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Goto Y, Ohta A, Sako Y, Yamagishi Y, Murakami H, Suga H (2008b) Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem Biol 3(2):120–129. doi:10.1021/cb700233t PubMedCrossRefGoogle Scholar
  18. Gredell JA, Frei CS, Cirino PC (2012) Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 7(4):477–499. doi:10.1002/biot.201100266 PubMedCrossRefGoogle Scholar
  19. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857PubMedCrossRefGoogle Scholar
  20. Harris ME (2008) Catalytic Modes in Natural Ribozymes. Wiley Encyclopedia of Chemical Biology. John Wiley & Sons, Inc., 1–11. doi:10.1002/9780470048672.wecb640
  21. Hartig JS, Najafi-Shoushtari SH, Grune I, Yan A, Ellington AD, Famulok M (2002) Protein-dependent ribozymes report molecular interactions in real time. Nat Biotechnol 20(7):717–722. doi:10.1038/nbt0702-717 PubMedCrossRefGoogle Scholar
  22. Hausch F, Jäschke A (1997) Libraries of multifunctional RNA conjugates for the selection of new RNA catalysts. Bioconjugate Chem 8(6):885–890. doi:10.1021/bc9701151 CrossRefGoogle Scholar
  23. Illangasekare M, Yarus M (1999) A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. RNA 5(11):1482–1489PubMedCentralPubMedCrossRefGoogle Scholar
  24. Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267(5198):643–647PubMedCrossRefGoogle Scholar
  25. Jenne A, Famulok M (1998) A novel ribozyme with ester transferase activity. Chem Biol 5(1):23–34PubMedCrossRefGoogle Scholar
  26. Kawakami T, Aimoto S (2007) Peptide ligation using a building block having a cysteinyl prolyl ester (CPE) autoactivating unit at the carboxy terminus. Chem Lett 36(1):76–77. doi:10.1246/Cl.2007.76 CrossRefGoogle Scholar
  27. Kawakami T, Murakami H, Suga H (2008a) Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem Biol 15(1):32–42. doi:10.1016/j.chembiol.2007.12.008 PubMedCrossRefGoogle Scholar
  28. Kawakami T, Murakami H, Suga H (2008b) Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids. J Am Chem Soc 130(50):16861–16863. doi:10.1021/ja806998v PubMedCrossRefGoogle Scholar
  29. Kawakami T, Ohta A, Ohuchi M, Ashigai H, Murakami H, Suga H (2009) Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol 5(12):888–890. doi:10.1038/nchembio.259 PubMedCrossRefGoogle Scholar
  30. Ketzer P, Haas SF, Engelhardt S, Hartig JS, Nettelbeck DM (2012) Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res 40(21):e167. doi:10.1093/nar/gks734 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10(9):708–712. doi:10.1038/nsb959 PubMedCrossRefGoogle Scholar
  32. Klauser B, Hartig JS (2013) An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 41(10):5542–5552. doi:10.1093/nar/gkt253 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157Google Scholar
  34. Lad C, Williams NH, Wolfenden R (2003) The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proc Natl Acad Sci U S A 100(10):5607–5610. doi:10.1073/pnas.0631607100 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Lee N, Suga H (2001) A minihelix-loop RNA acts as a trans-aminoacylation catalyst. RNA 7(7):1043–1051PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lee N, Bessho Y, Wei K, Szostak JW, Suga H (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol 7(1):28–33. doi:10.1038/71225 PubMedCrossRefGoogle Scholar
  37. Lee J, Lin L, Li Y (2011) Functional nucleic acids for fluorescence-based biosensing applications. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology III, vol 113. Springer Series on Fluorescence, 221, p 201. doi:10.1007/978-3-642-18035-4_6
  38. Lewin AS (2010) Regulatory RNA in gene therapy. In: Herzog RW, Zolotukhin S (ed) A guide to human gene therapy. World Scientific Publishing Co Pte Ltd, Singapore, pp 103–122Google Scholar
  39. Link KH, Breaker RR (2009) In vitro selection of glmS ribozymes. Methods Mol Biol 540:349–364. doi:10.1007/978-1-59745-558-9_25 PubMedCrossRefGoogle Scholar
  40. Lohse PA, Szostak JW (1996) Ribozyme-catalysed amino-acid transfer reactions. Nature 381(6581):442–444. doi:10.1038/381442a0 PubMedCrossRefGoogle Scholar
  41. Meyer AJ, Ellefson JW, Ellington AD (2012) Abiotic self-replication. Acc Chem Res 45(12):2097–2105. doi:10.1021/ar200325v PubMedCrossRefGoogle Scholar
  42. Michener JK, Smolke CD (2012) High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 14(4):306–316. doi:10.1016/j.ymben.2012.04.004 PubMedCrossRefGoogle Scholar
  43. Min D-H, Kim D-E (2012) Suppression of hepatitis C viral genome replication with RNA-cleaving deoxyribozyme. In: Erdmann VA, Barciszewski J (eds) From nucleic acids sequences to molecular medicine. RNA Technologies, Springer Berlin Heidelberg, pp 429–452. doi:10.1007/978-3-642-27426-8_17 CrossRefGoogle Scholar
  44. Morimoto J, Hayashi Y, Iwasaki K, Suga H (2011) Flexizymes: their evolutionary history and the origin of catalytic function. Acc Chem Res 44(12):1359–1368. doi:10.1021/ar2000953 PubMedCrossRefGoogle Scholar
  45. Müller S, Strohbach D, Wolf J (2006) Sensors made of RNA: tailored ribozymes for detection of small organic molecules, metals, nucleic acids and proteins. IEE Proc Nanobiotechnology 153(2):31–40. doi:10.1049/ip-nbt:20050047 CrossRefGoogle Scholar
  46. Murakami H, Kourouklis D, Suga H (2003a) Using a solid-phase ribozyme aminoacylation system to reprogram the genetic code. Chem Biol 10(11):1077–1084PubMedCrossRefGoogle Scholar
  47. Murakami H, Saito H, Suga H (2003b) A versatile tRNA aminoacylation catalyst based on RNA. Chem Biol 10(7):655–662PubMedCrossRefGoogle Scholar
  48. Murakami H, Ohta A, Ashigai H, Suga H (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat Methods 3(5):357–359. doi:10.1038/nmeth877 PubMedCrossRefGoogle Scholar
  49. Nagraj N, Lu Y (2011) Catalytic nucleic acid biosensors for environmental monitoring. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. The Royal Society of Chemistry, Cambridge, pp 82–98Google Scholar
  50. Niwa N, Yamagishi Y, Murakami H, Suga H (2009) A flexizyme that selectively charges amino acids activated by a water-friendly leaving group. Bioorg Med Chem Lett 19(14):3892–3894. doi:10.1016/j.bmcl.2009.03.114 PubMedCrossRefGoogle Scholar
  51. Nomura Y, Zhou L, Miu A, Yokobayashi Y (2013) Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2(12):684–689. doi:10.1021/sb400037a PubMedCentralPubMedCrossRefGoogle Scholar
  52. Ohta A, Murakami H, Higashimura E, Suga H (2007) Synthesis of polyester by means of genetic code reprogramming. Chem Biol 14(12):1315–1322. doi:10.1016/j.chembiol.2007.10.015 PubMedCrossRefGoogle Scholar
  53. Piganeau N, Jenne A, Thuillier V, Famulok M (2000) An allosteric ribozyme regulated by doxycyline. Angew Chem, Int Ed 39(23):4369–4373. doi:10.1002/1521-3773(20001201)39:23<4369::aid-anie4369>;2-n CrossRefGoogle Scholar
  54. Pradeepkumar PI, Höbartner C, Baum DA, Silverman SK (2008) DNA-catalyzed formation of nucleopeptide linkages. Angew Chem, Int Ed 47(9):1753–1757. doi:10.1002/anie.200703676 CrossRefGoogle Scholar
  55. Prudent JR, Uno T, Schultz PG (1994) Expanding the scope of RNA catalysis. Science 264(5167):1924–1927PubMedCrossRefGoogle Scholar
  56. Puttaraju M, Jamison SF, Mansfield SG, Garcia-Blanco MA, Mitchell LG (1999) Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat Biotechnol 17(3):246–252. doi:10.1038/6986 PubMedCrossRefGoogle Scholar
  57. Ramaswamy K, Saito H, Murakami H, Shiba K, Suga H (2004) Designer ribozymes: programming the tRNA specificity into flexizyme. J Am Chem Soc 126(37):11454–11455. doi:10.1021/ja046843y PubMedCrossRefGoogle Scholar
  58. Sachdeva A, Chandra M, Chandrasekar J, Silverman SK (2012) Covalent tagging of phosphorylated peptides by phosphate-specific deoxyribozymes. ChemBioChem 13(5):654–657. doi:10.1002/cbic.201200048 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Saito H, Suga H (2001) A ribozyme exclusively aminoacylates the 3'-hydroxyl group of the tRNA terminal adenosine. J Am Chem Soc 123(29):7178–7179PubMedCrossRefGoogle Scholar
  60. Saito H, Suga H (2002) Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme. Nucleic Acids Res 30(23):5151–5159PubMedCentralPubMedCrossRefGoogle Scholar
  61. Saito H, Kourouklis D, Suga H (2001a) An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J 20(7):1797–1806. doi:10.1093/emboj/20.7.1797 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Saito H, Watanabe K, Suga H (2001b) Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7(12):1867–1878PubMedCentralPubMedGoogle Scholar
  63. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94(9):4262–4266PubMedCentralPubMedCrossRefGoogle Scholar
  64. Saragliadis A, Hartig JS (2013) Ribozyme-based transfer RNA switches for post-transcriptional control of amino acid identity in protein synthesis. J Am Chem Soc 135(22):8222–8226. doi:10.1021/Ja311107p PubMedCrossRefGoogle Scholar
  65. Schlosser K, Li YF (2010) A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8–17 RNA-cleaving DNAzyme. ChemBioChem 11(7):866–879. doi:10.1002/Cbic.200900786 PubMedCrossRefGoogle Scholar
  66. Schroeder GK, Lad C, Wyman P, Williams NH, Wolfenden R (2006) The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc Natl Acad Sci U S A 103(11):4052–4055. doi:10.1073/pnas.0510879103 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Sengle G, Eisenfuhr A, Arora PS, Nowick JS, Famulok M (2001) Novel RNA catalysts for the Michael reaction. Chem Biol 8(5):459–473PubMedCrossRefGoogle Scholar
  68. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751–755. doi:10.1038/90802 PubMedCrossRefGoogle Scholar
  69. Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A 96(7):3584–3589PubMedCentralPubMedCrossRefGoogle Scholar
  70. Soukup GA, Breaker RR (2000) Allosteric nucleic acid catalysts. Curr Opin Struct Biol 10(3):318–325. doi:10.1016/S0959-440X(00)00090-7 PubMedCrossRefGoogle Scholar
  71. Suga H, Hayashi G, Terasaka N (2011) The RNA origin of transfer RNA aminoacylation and beyond. Philosophical transactions of the Royal Society of London Series B. Biol Sci 366(1580):2959–2964. doi:10.1098/rstb.2011.0137 CrossRefGoogle Scholar
  72. Sullenger BA (2003) Targeted genetic repair: an emerging approach to genetic therapy. J Clin Invest 112(3):310–311. doi:10.1172/JCI19419 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Sullenger BA, Cech TR (1994) Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371(6498):619–622. doi:10.1038/371619a0 PubMedCrossRefGoogle Scholar
  74. Szostak J (2012) The eightfold path to non-enzymatic RNA replication. J Syst Chem 3(1):2. doi:10.1186/1759-2208-3-2 CrossRefGoogle Scholar
  75. Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci U S A 107(10):4585–4589. doi:10.1073/pnas.0912895107 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Turk RM, Illangasekare M, Yarus M (2011) Catalyzed and spontaneous reactions on ribozyme ribose. J Am Chem Soc 133(15):6044–6050. doi:10.1021/ja200275h PubMedCrossRefGoogle Scholar
  77. Vauléon S, Ivanov SA, Gwiazda S, Müller S (2005) Site-specific fluorescent and affinity labelling of RNA by using a small engineered twin ribozyme. ChemBioChem 6(12):2158–2162. doi:10.1002/cbic.200500215 PubMedCrossRefGoogle Scholar
  78. Walsh SM, Sachdeva A, Silverman SK (2013) DNA catalysts with tyrosine kinase activity. J Am Chem Soc 135(40):14928–14931. doi:10.1021/ja407586u PubMedCrossRefGoogle Scholar
  79. Welz R, Bossmann K, Klug C, Schmidt C, Fritz HJ, Müller S (2003) Site-directed alteration of RNA sequence mediated by an engineered twin ribozyme. Angew Chem, Int Ed 42(21):2424–2427. doi:10.1002/anie.200250611 CrossRefGoogle Scholar
  80. Wiegand TW, Janssen RC, Eaton BE (1997) Selection of RNA amide synthases. Chem Biol 4(9):675–683PubMedCrossRefGoogle Scholar
  81. Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem, Int Ed 47(14):2604–2607. doi:10.1002/anie.200703700 CrossRefGoogle Scholar
  82. Wilson C, Szostak JW (1995) In vitro evolution of a self-alkylating ribozyme. Nature 374(6525):777–782. doi:10.1038/374777a0 PubMedCrossRefGoogle Scholar
  83. Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104(36):14283–14288. doi:10.1073/pnas.0703961104 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322(5900):456–460. doi:10.1126/science.1160311 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Wittmann A, Suess B (2011) Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. Mol Biosyst 7(8):2419–2427. doi:10.1039/c1mb05070b PubMedCrossRefGoogle Scholar
  86. Wong OY, Pradeepkumar PI, Silverman SK (2011) DNA-catalyzed covalent modification of amino acid side chains in tethered and free peptide substrates. Biochemistry 50(21):4741–4749. doi:10.1021/bi200585n PubMedCentralPubMedCrossRefGoogle Scholar
  87. Yamagishi Y, Shoji I, Miyagawa S, Kawakami T, Katoh T, Goto Y, Suga H (2011) Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem Biol 18(12):1562–1570. doi:10.1016/j.chembiol.2011.09.013 PubMedCrossRefGoogle Scholar
  88. Yen L, Svendsen J, Lee JS, Gray JT, Magnier M, Baba T, D’Amato RJ, Mulligan RC (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431(7007):471–476. doi:10.1038/nature02844 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Darko Balke
    • 1
  • Claudia Wichert
    • 1
  • Bettina Appel
    • 1
  • Sabine Müller
    • 1
  1. 1.Ernst Moritz Arndt Universität Greifswald, Institut für BiochemieGreifswaldGermany

Personalised recommendations