Skip to main content
Log in

Optical forward-scattering for identification of bacteria within microcolonies

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The development of methods for the rapid identification of pathogenic bacteria is a major step towards accelerated clinical diagnosis of infectious diseases and efficient food and water safety control. Methods for identification of bacterial colonies on gelified nutrient broth have the potential to bring an attractive solution, combining simple optical instrumentation, no need for sample preparation or labelling, in a non-destructive process. Here, we studied the possibility of discriminating different bacterial species at a very early stage of growth (6 h of incubation at 37 °C), on thin layers of agar media (1 mm of Tryptic Soy Agar), using light forward-scattering and learning algorithms (Bayes Network, Continuous Naive Bayes, Sequential Minimal Optimisation). A first database of more than 1,000 scatterograms acquired on 7 gram-negative strains yielded a recognition rate of nearly 80 %, after only 6 h of incubation. We investigated also the prospect of identifying different strains from a same species through forward scattering. We discriminated, thus, four strains of Escherichia coli with a recognition rate reaching 82 %. Finally, we show the discrimination of two species of coagulase-negative Staphylococci (S. haemolyticus and S. cohnii), on a commercial selective pre-poured medium used in clinical diagnosis (ChromID MRSA, bioMérieux), without opening lids during the scatterogram acquisition. This shows the potential of this method—non-invasive, preventing cross-contaminations and requiring minimal dish handling—to provide early clinically-relevant information in the context of fully automated microbiology labs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bae E, Banada PP, Huff K, Bhunia AK, Robinson JP, Hirleman ED (2008) Analysis of time-resolved scattering from macroscale bacterial colonies. J Biomed Opt 13:014010. doi:10.1117/1.2830655

    Article  PubMed  Google Scholar 

  • Bae E, Aroonnual A, Bhunia AK, Robinson JP, Hirleman ED (2009) System automation for a bacterial colony detection and identification instrument via forward scattering. Meas Sci Technol 20:015802. doi:10.1088/0957-0233/20/1/015802

    Article  Google Scholar 

  • Bae E, Bai N, Aroonnual A, Bhunia AK, Hirleman ED (2011) Label-free identification of bacterial microcolonies via elastic scattering. Biotechnol Bioeng 108:637–644. doi:10.1002/bit.22980

    Article  CAS  PubMed  Google Scholar 

  • Banada PP, Guo S, Bayraktar B, Bae E, Rajwa B, Robinson JP, Hirleman ED, Bhunia AK (2007) Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species. Biosens Bioelectron 22:1664–1671. doi:10.1016/j.bios.2006.07.028

    Article  CAS  PubMed  Google Scholar 

  • Banada PP, Huff K, Bae E, Rajwa B, Aroonnual A, Bayraktar B, Adil A, Robinson JP, Hirleman ED, Bhunia AK (2009) Label-free detection of multiple bacterial pathogens using light-scattering sensor. Biosens Bioelectron 24:1685–1692. doi:10.1016/j.bios.2008.08.053

    Article  CAS  PubMed  Google Scholar 

  • Bayraktar B, Banada PP, Hirleman ED, Bhunia AK, Robinson JP, Rajwa B (2006) Feature extraction from light-scatter patterns of Listeria colonies for identification and classification. J Biomed Opt 11:034006

    Article  Google Scholar 

  • Buzalewicz I, Wieliczko A, Podbielska H (2011) Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination. Opt Express 19:21768–21785

    Article  CAS  PubMed  Google Scholar 

  • Chong CW, Raveendran P, Mukundan R (2003) A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recogn 36:731–742

    Article  Google Scholar 

  • Citti G (2013) Zernike polynomials. University of Bologna (UNIBO), Mathematics Department. http://www.dm.unibo.it/home/citti/html/AnalisiMM/Schwiegerlink-Slides-Zernike.pdf. Accessed 4 April 2013

  • Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309–347

    Google Scholar 

  • Forbes BA, Sahm DF, Weissfeld AS (2007) Bailey & Scott’s diagnostic microbiology, 12th edn. Mosby Elsevier, St Louis, p 324

    Google Scholar 

  • Fox A (2006) Mass spectrometry for species or strain identification after culture or without culture: past, present and future. J Clin Microbiol 44:2677–2680. doi:10.1128/JCM.00971-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garza-González E, Morfín-Otero R, Llaca-Díaz JM, Rodriguez-Noriega E (2010) Staphylococcal cassette chromosome mec (SCCmec) in methicillin-resistant coagulase-negative Staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect 138:645–654. doi:10.1017/S0950268809991361

    Article  PubMed  Google Scholar 

  • Gazin M, Lee A, Derde L, Kazma M, Lammens C, Ieven M, Bonten M, Carmeli Y, Harbarth S, Brun-Buisson C, Goossens H, Malhotra-Kumar S (2012) Culture-based detection of methicillin-resistant Staphylococcus aureus by a network of European laboratories: an external quality assessment study. Eur J Clin Microbiol Infect Dis 31:1765–1770. doi:10.1007/s10096-011-1499-0

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R (2003) Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. Vib Spectrosc 32:33–45. doi:10.1016/S0924-2031(03)00045-6

    Article  CAS  Google Scholar 

  • Gu J, Shu HZ, Toumoulin C, Luo LM (2002) A novel algorithm for fast computation of Zernike moments. Pattern Recogn 35:2905–2911

    Article  Google Scholar 

  • Haavig DL, Lorden G (2002) Method and apparatus for rapid particle identification utilising scattered light histograms. US Patent, US2002/0186372A1. Micro Identification Technologies, http://www.micro-identification.com. Accessed 15 April 2013

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA Data Mining Software: An Update. SIGKDD Explorations 11:10–19. http://www.cs.waikato.ac.nz/ml/weka. Accessed 29 July 2013

  • Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining Light on the Microbial World: The Application of Raman Microspectroscopy. In: Laskin AI, Sariaslani S, Gadd GM (ed) Advances in Applied Microbiology, vol. 70, Academic Press, pp 153–186

  • Hwang SK, Kim WY (2006) A novel approach to the fast computation of Zernike moments. Pattern Recogn 39:2065–2076. doi:10.1016/j.patcog.2006.03.004

    Article  Google Scholar 

  • Langley P, Iba W, Thompson K (1992) An analysis of Bayesian classifiers. In: AAAI-92 Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI Press, pp. 223–228.

  • Lesne A (2011) Shannon entropy: a rigorous mathematical notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Institut des Hautes Etudes Scientifiques. http://preprints.ihes.fr/2011/M/M-11-04.pdf Accessed 2 August 2013

  • Martins A, Cunha MLRS (2007) Methicillin resistance in Staphylococcus aureus and coagulase-negative Staphylococci: epidemiological and molecular aspects. Microbiol Immunol 51:787–795

    Article  CAS  PubMed  Google Scholar 

  • Morris K, Wilson C, Wilcox MH (2012) Evaluation of chromogenic methicillin-resistant Staphylococcus aureus media: sensitivity versus turnaround time. J Hosp Infect 81:20–24

    Article  CAS  PubMed  Google Scholar 

  • Platt JC (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (ed) Advances in Kernel Methods—Support Vector Learning

  • Rakotomalala R (2005) TANAGRA : un logiciel gratuit pour l’enseignement et la recherche. In Actes de EGC’2005, RNTI-E-3, vol. 2, pp.697–702. http://eric.univ-lyon2.fr/~ricco/tanagra/fr/tanagra.html. Accessed 25 March 2013

  • Rasband WS. US National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/index.html. Accessed 5 April 2013

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  Google Scholar 

  • Singh C, Walia E (2010) Fast and numerically stable methods for the computation of Zernike moments. Pattern Recogn 43:2497–2506. doi:10.1016/j.patcog.2010.02.005

    Article  Google Scholar 

  • Van Hoecke F, Deloof N, Claeys G (2011) Performance evaluation of a modified chromogenic medium, ChromID MRSA New, for the detection of methicillin-resistant Staphylococcus aureus from clinical specimens. Eur J Clin Microbiol Infect Dis 30:1595–1598. doi:10.1007/s10096-011-1265-3

    Article  CAS  PubMed  Google Scholar 

  • Vinh DC, Nichol KA, Rand F, Karlowsky JA (2006) Not so pretty in pink: Staphylococcus cohnii masquerading as methicillin-resistant Staphylococcus aureus on chromogenic. Media J Clin Microbiol 44:4623–4624. doi:10.1128/JCM.01764-06

    Article  Google Scholar 

  • Wee CY, Paramesran R (2006) Efficient computation of radial moment functions using symmetrical property. Pattern Recogn 39:2036–2046. doi:10.1016/j.patcog.2006.05.027

    Article  Google Scholar 

  • Willemse-Erix DFM, Scholtes-Timmerman MJ, Jachtenberg JW, van Leeuwen WB, Horst-Kreft D, Bakker Schut TC, Deurenberg RH, Puppels GJ, van Belkum A, Vos MC, Maquelin K (2009) Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol 47:652–659. doi:10.1128/JCM.01900-08

    Article  PubMed Central  PubMed  Google Scholar 

  • Witten IH, Frank E, Hall MA (2011) Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, 3rd Edition

Download references

Acknowledgments

We are grateful to Frédéric Pinston, Quentin Jossso and Sylvain Orenga from bioMérieux for helpful discussions. Charles-Edmond Bichot (Ecole Centrale de Lyon) is gratefully acknowledged for assistance in java programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre R. Marcoux.

Additional information

Antoine Cuer, Joe-Loïc Kodja, Arthur Lefebvre, Florian Licari, Robin Louvet and Anil Narassiguin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 296 kb)

ESM 2

(M 1 kb)

ESM 3

(JAVA 15 kb)

ESM 4

(TXT 2554 kb)

ESM 5

(TXT 2603 kb)

ESM 6

(TXT 2682 kb)

ESM 7

(TXT 2682 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcoux, P.R., Dupoy, M., Cuer, A. et al. Optical forward-scattering for identification of bacteria within microcolonies. Appl Microbiol Biotechnol 98, 2243–2254 (2014). https://doi.org/10.1007/s00253-013-5495-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5495-4

Keywords

Navigation