Applied Microbiology and Biotechnology

, Volume 98, Issue 5, pp 2243–2254 | Cite as

Optical forward-scattering for identification of bacteria within microcolonies

  • Pierre R. Marcoux
  • Mathieu Dupoy
  • Antoine Cuer
  • Joe-Loïc Kodja
  • Arthur Lefebvre
  • Florian Licari
  • Robin Louvet
  • Anil Narassiguin
  • Frédéric Mallard
Methods and protocols


The development of methods for the rapid identification of pathogenic bacteria is a major step towards accelerated clinical diagnosis of infectious diseases and efficient food and water safety control. Methods for identification of bacterial colonies on gelified nutrient broth have the potential to bring an attractive solution, combining simple optical instrumentation, no need for sample preparation or labelling, in a non-destructive process. Here, we studied the possibility of discriminating different bacterial species at a very early stage of growth (6 h of incubation at 37 °C), on thin layers of agar media (1 mm of Tryptic Soy Agar), using light forward-scattering and learning algorithms (Bayes Network, Continuous Naive Bayes, Sequential Minimal Optimisation). A first database of more than 1,000 scatterograms acquired on 7 gram-negative strains yielded a recognition rate of nearly 80 %, after only 6 h of incubation. We investigated also the prospect of identifying different strains from a same species through forward scattering. We discriminated, thus, four strains of Escherichia coli with a recognition rate reaching 82 %. Finally, we show the discrimination of two species of coagulase-negative Staphylococci (S. haemolyticus and S. cohnii), on a commercial selective pre-poured medium used in clinical diagnosis (ChromID MRSA, bioMérieux), without opening lids during the scatterogram acquisition. This shows the potential of this method—non-invasive, preventing cross-contaminations and requiring minimal dish handling—to provide early clinically-relevant information in the context of fully automated microbiology labs.


Bacteria Identification Forward-scattering Label-free Microcolonies Non-invasive technique 



We are grateful to Frédéric Pinston, Quentin Jossso and Sylvain Orenga from bioMérieux for helpful discussions. Charles-Edmond Bichot (Ecole Centrale de Lyon) is gratefully acknowledged for assistance in java programming.

Supplementary material

253_2013_5495_MOESM1_ESM.pdf (296 kb)
ESM 1 (PDF 296 kb)
253_2013_5495_MOESM2_ESM.m (1 kb)
ESM 2 (M 1 kb) (16 kb)
ESM 3 (JAVA 15 kb)
253_2013_5495_MOESM4_ESM.txt (2.5 mb)
ESM 4 (TXT 2554 kb)
253_2013_5495_MOESM5_ESM.txt (2.5 mb)
ESM 5 (TXT 2603 kb)
253_2013_5495_MOESM6_ESM.txt (2.6 mb)
ESM 6 (TXT 2682 kb)
253_2013_5495_MOESM7_ESM.txt (2.6 mb)
ESM 7 (TXT 2682 kb)


  1. Bae E, Banada PP, Huff K, Bhunia AK, Robinson JP, Hirleman ED (2008) Analysis of time-resolved scattering from macroscale bacterial colonies. J Biomed Opt 13:014010. doi: 10.1117/1.2830655 PubMedCrossRefGoogle Scholar
  2. Bae E, Aroonnual A, Bhunia AK, Robinson JP, Hirleman ED (2009) System automation for a bacterial colony detection and identification instrument via forward scattering. Meas Sci Technol 20:015802. doi: 10.1088/0957-0233/20/1/015802 CrossRefGoogle Scholar
  3. Bae E, Bai N, Aroonnual A, Bhunia AK, Hirleman ED (2011) Label-free identification of bacterial microcolonies via elastic scattering. Biotechnol Bioeng 108:637–644. doi: 10.1002/bit.22980 PubMedCrossRefGoogle Scholar
  4. Banada PP, Guo S, Bayraktar B, Bae E, Rajwa B, Robinson JP, Hirleman ED, Bhunia AK (2007) Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species. Biosens Bioelectron 22:1664–1671. doi: 10.1016/j.bios.2006.07.028 PubMedCrossRefGoogle Scholar
  5. Banada PP, Huff K, Bae E, Rajwa B, Aroonnual A, Bayraktar B, Adil A, Robinson JP, Hirleman ED, Bhunia AK (2009) Label-free detection of multiple bacterial pathogens using light-scattering sensor. Biosens Bioelectron 24:1685–1692. doi: 10.1016/j.bios.2008.08.053 PubMedCrossRefGoogle Scholar
  6. Bayraktar B, Banada PP, Hirleman ED, Bhunia AK, Robinson JP, Rajwa B (2006) Feature extraction from light-scatter patterns of Listeria colonies for identification and classification. J Biomed Opt 11:034006CrossRefGoogle Scholar
  7. Buzalewicz I, Wieliczko A, Podbielska H (2011) Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination. Opt Express 19:21768–21785PubMedCrossRefGoogle Scholar
  8. Chong CW, Raveendran P, Mukundan R (2003) A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recogn 36:731–742CrossRefGoogle Scholar
  9. Citti G (2013) Zernike polynomials. University of Bologna (UNIBO), Mathematics Department. Accessed 4 April 2013
  10. Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309–347Google Scholar
  11. Forbes BA, Sahm DF, Weissfeld AS (2007) Bailey & Scott’s diagnostic microbiology, 12th edn. Mosby Elsevier, St Louis, p 324Google Scholar
  12. Fox A (2006) Mass spectrometry for species or strain identification after culture or without culture: past, present and future. J Clin Microbiol 44:2677–2680. doi: 10.1128/JCM.00971-06 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Garza-González E, Morfín-Otero R, Llaca-Díaz JM, Rodriguez-Noriega E (2010) Staphylococcal cassette chromosome mec (SCCmec) in methicillin-resistant coagulase-negative Staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect 138:645–654. doi: 10.1017/S0950268809991361 PubMedCrossRefGoogle Scholar
  14. Gazin M, Lee A, Derde L, Kazma M, Lammens C, Ieven M, Bonten M, Carmeli Y, Harbarth S, Brun-Buisson C, Goossens H, Malhotra-Kumar S (2012) Culture-based detection of methicillin-resistant Staphylococcus aureus by a network of European laboratories: an external quality assessment study. Eur J Clin Microbiol Infect Dis 31:1765–1770. doi: 10.1007/s10096-011-1499-0 PubMedCrossRefGoogle Scholar
  15. Goodacre R (2003) Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. Vib Spectrosc 32:33–45. doi: 10.1016/S0924-2031(03)00045-6 CrossRefGoogle Scholar
  16. Gu J, Shu HZ, Toumoulin C, Luo LM (2002) A novel algorithm for fast computation of Zernike moments. Pattern Recogn 35:2905–2911CrossRefGoogle Scholar
  17. Haavig DL, Lorden G (2002) Method and apparatus for rapid particle identification utilising scattered light histograms. US Patent, US2002/0186372A1. Micro Identification Technologies, Accessed 15 April 2013
  18. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA Data Mining Software: An Update. SIGKDD Explorations 11:10–19. Accessed 29 July 2013
  19. Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining Light on the Microbial World: The Application of Raman Microspectroscopy. In: Laskin AI, Sariaslani S, Gadd GM (ed) Advances in Applied Microbiology, vol. 70, Academic Press, pp 153–186Google Scholar
  20. Hwang SK, Kim WY (2006) A novel approach to the fast computation of Zernike moments. Pattern Recogn 39:2065–2076. doi: 10.1016/j.patcog.2006.03.004 CrossRefGoogle Scholar
  21. Langley P, Iba W, Thompson K (1992) An analysis of Bayesian classifiers. In: AAAI-92 Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI Press, pp. 223–228.Google Scholar
  22. Lesne A (2011) Shannon entropy: a rigorous mathematical notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Institut des Hautes Etudes Scientifiques. Accessed 2 August 2013
  23. Martins A, Cunha MLRS (2007) Methicillin resistance in Staphylococcus aureus and coagulase-negative Staphylococci: epidemiological and molecular aspects. Microbiol Immunol 51:787–795PubMedCrossRefGoogle Scholar
  24. Morris K, Wilson C, Wilcox MH (2012) Evaluation of chromogenic methicillin-resistant Staphylococcus aureus media: sensitivity versus turnaround time. J Hosp Infect 81:20–24PubMedCrossRefGoogle Scholar
  25. Platt JC (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (ed) Advances in Kernel Methods—Support Vector LearningGoogle Scholar
  26. Rakotomalala R (2005) TANAGRA : un logiciel gratuit pour l’enseignement et la recherche. In Actes de EGC’2005, RNTI-E-3, vol. 2, pp.697–702. Accessed 25 March 2013
  27. Rasband WS. US National Institutes of Health, Bethesda, Maryland, USA, Accessed 5 April 2013
  28. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675PubMedCrossRefGoogle Scholar
  29. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656CrossRefGoogle Scholar
  30. Singh C, Walia E (2010) Fast and numerically stable methods for the computation of Zernike moments. Pattern Recogn 43:2497–2506. doi: 10.1016/j.patcog.2010.02.005 CrossRefGoogle Scholar
  31. Van Hoecke F, Deloof N, Claeys G (2011) Performance evaluation of a modified chromogenic medium, ChromID MRSA New, for the detection of methicillin-resistant Staphylococcus aureus from clinical specimens. Eur J Clin Microbiol Infect Dis 30:1595–1598. doi: 10.1007/s10096-011-1265-3 PubMedCrossRefGoogle Scholar
  32. Vinh DC, Nichol KA, Rand F, Karlowsky JA (2006) Not so pretty in pink: Staphylococcus cohnii masquerading as methicillin-resistant Staphylococcus aureus on chromogenic. Media J Clin Microbiol 44:4623–4624. doi: 10.1128/JCM.01764-06 CrossRefGoogle Scholar
  33. Wee CY, Paramesran R (2006) Efficient computation of radial moment functions using symmetrical property. Pattern Recogn 39:2036–2046. doi: 10.1016/j.patcog.2006.05.027 CrossRefGoogle Scholar
  34. Willemse-Erix DFM, Scholtes-Timmerman MJ, Jachtenberg JW, van Leeuwen WB, Horst-Kreft D, Bakker Schut TC, Deurenberg RH, Puppels GJ, van Belkum A, Vos MC, Maquelin K (2009) Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol 47:652–659. doi: 10.1128/JCM.01900-08 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Witten IH, Frank E, Hall MA (2011) Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, 3rd EditionGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pierre R. Marcoux
    • 1
  • Mathieu Dupoy
    • 1
  • Antoine Cuer
    • 2
  • Joe-Loïc Kodja
    • 2
  • Arthur Lefebvre
    • 2
  • Florian Licari
    • 2
  • Robin Louvet
    • 2
  • Anil Narassiguin
    • 2
  • Frédéric Mallard
    • 3
  1. 1.Department of Technology for Biology and HealthcareCEA-LETI MINATECGrenobleFrance
  2. 2.Ecole Centrale de LyonEcullyFrance
  3. 3.bioMérieux SA, Innovation & Systems/Technology Research/Sample Prep & Processing LabGrenobleFrance

Personalised recommendations