Skip to main content

Advertisement

Log in

Genetic surgery in fungi: employing site-specific recombinases for genome manipulation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Site-specific recombination mediates the rearrangement of nucleic acids by the virtue of an recombinase acting on specific recognition sequences. Recombining activities belong either to the tyrosine- or serine-type group, based on the presence of specific residues in the catalytic centre, which can be further subdivided into families due to additional criteria. The most prominent systems are the λ phage integrase acting on att sites; the Cre recombinase from bacteriophage P1 with its loxP attachment sites; the FLP/FTR system of fungal origin, where it is required for 2-μm plasmid replication/amplification in yeast; and the prokaryotic β-recombinase that recombines six sites specifically in cis. Each of these has been exploited in fungal hosts of biotechnological, medical or general relevance, mainly for cloning projects, approaches of gene targeting, genome modification or screening purposes. With their precise and defined mode of action are site-specific recombination systems eminently suited for genetic tasks in fungi, like they are executed in functional studies at high throughput or modern approaches of synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abe A, Elegado EB, Sone T (2006) Construction of pDESTR, a GATEWAY vector for gene disruption in filamentous fungi. Curr Microbiol 52:210–215

    CAS  PubMed  Google Scholar 

  • Abremski K, Hoess R (1985) Phage P1 Cre-loxP site-specific recombination. Effects of DNA supercoiling on catenation and knotting of recombinant products. J Mol Biol 184:211–220

    CAS  PubMed  Google Scholar 

  • Abremski K, Wierzbicki A, Frommer B, Hoess RH (1986) Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J Biol Chem 261:391–396

    CAS  PubMed  Google Scholar 

  • Ahn J, Choi CH, Kang CM, Kim CH, Park HM, Song KB, Hoe KL, Won M, Chung KS (2009) Generation of expression vectors for high-throughput functional analysis of target genes in Schizosaccharomyces pombe. J Microbiol 47:789–795

    CAS  PubMed  Google Scholar 

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    CAS  PubMed  Google Scholar 

  • Alberti S, Gitler AD, Lindquist S (2007) A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24:913–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso JC, Gutierrez C, Rojo F (1995a) The role of chromatin-associated protein Hbsu in β-mediated DNA recombination is to facilitate the joining of distant recombination sites. Mol Microbiol 18:471–478

    Google Scholar 

  • Alonso JC, Weise F, Rojo F (1995b) The Bacillus subtilis histone-like protein Hbsu is required for DNA resolution and DNA inversion mediated by the β recombinase of plasmid pSM19035. J Biol Chem 270:2938–2945

    CAS  PubMed  Google Scholar 

  • Amich J, Schafferer L, Haas H, Krappmann S (2013) Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 9:e1003573

    Google Scholar 

  • Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Austin S, Ziese M, Sternberg N (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736

    CAS  PubMed  Google Scholar 

  • Bloemendal S, Löper D, Terfehr D, Kopke K, Kluge J, Teichert I, Kück U (2013) Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. J Biotech 169C:51–62

    Google Scholar 

  • Bouhassira EE, Westerman K, Leboulch P (1997) Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90:3332–3344

    CAS  PubMed  Google Scholar 

  • Broach JR (1982) The yeast plasmid 2μ circle. Cell 28:203–204

    CAS  PubMed  Google Scholar 

  • Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2μ circle is site-specific. Cell 29:227–234

    CAS  PubMed  Google Scholar 

  • Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    CAS  PubMed  Google Scholar 

  • Bugeja HE, Boyce KJ, Weerasinghe H, Beard S, Jeziorowski A, Pasricha S, Payne M, Schreider L, Andrianopoulos A (2012) Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei. Fungal Genet Biol 49:772–778

    CAS  PubMed  Google Scholar 

  • Campbell AM (1992) Chromosomal insertion sites for phages and plasmids. J Bacteriol 174:7495–7499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canosa I, Rojo F, Alonso JC (1996) Site-specific recombination by the β protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res 24:2712–2717

    Google Scholar 

  • Carter Z, Delneri D (2010) New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 27:765–775

    CAS  PubMed  Google Scholar 

  • Ceglowski P, Lurz R, Alonso JC (1993) Functional analysis of pSM19035-derived replicons in Bacillus subtilis. FEMS Microbiol Lett 109:145–150

    CAS  PubMed  Google Scholar 

  • Chen Y, Rice PA (2003) New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32:135–159

    CAS  PubMed  Google Scholar 

  • Cheo DL, Titus SA, Byrd DR, Hartley JL, Temple GF, Brasch MA (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. Genome Res 14:2111–2120

    CAS  PubMed  Google Scholar 

  • Dennison PM, Ramsdale M, Manson CL, Brown AJ (2005) Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol 42:737–748

    CAS  PubMed  Google Scholar 

  • Deplancke B, Dupuy D, Vidal M, Walhout AJ (2004) A Gateway-compatible yeast one-hybrid system. Genome Res 14:2093–2101

    CAS  PubMed  Google Scholar 

  • Diaz V, Rojo F, Martinez AC, Alonso JC, Bernad A (1999) The prokaryotic β-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem 274:6634–6640

    CAS  PubMed  Google Scholar 

  • Diaz V, Servert P, Prieto I, Gonzalez MA, Martinez AC, Alonso JC, Bernad A (2001) New insights into host factor requirements for prokaryotic β-recombinase-mediated reactions in mammalian cells. J Biol Chem 276:16257–16264

    CAS  PubMed  Google Scholar 

  • Enquist LW, Kikuchi A, Weisberg RA (1979) The role of λ integrase in integration and excision. Cold Spring Harb Symp Quant Biol 43(Pt 2):1115–1120

    CAS  PubMed  Google Scholar 

  • Esposito D, Gillette WK, Miller DA, Taylor TE, Frank PH, Hu R, Bekisz J, Hernandez J, Cregg JM, Zoon KC, Hartley JL (2005) Gateway cloning is compatible with protein secretion from Pichia pastoris. Protein Expr Purif 40:424–428

    CAS  PubMed  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  PubMed Central  Google Scholar 

  • Florea S, Andreeva K, Machado C, Mirabito PM, Schardl CL (2009) Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid. Fungal Genet Biol 46:721–730

    CAS  PubMed  Google Scholar 

  • Florea S, Machado C, Andreeva K, Schardl CL (2012) The Cre/lox system: a practical tool to efficiently eliminate selectable markers in fungal endophytes. Methods Mol Biol 824:371–379

    CAS  PubMed  Google Scholar 

  • Forment JV, Ramon D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224

    CAS  PubMed  Google Scholar 

  • Friesen H, Sadowski PD (1992) Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation. J Mol Biol 225:313–326

    CAS  PubMed  Google Scholar 

  • Garcia-Pedrajas MD, Nadal M, Kapa LB, Perlin MH, Andrews DL, Gold SE (2008) DelsGate, a robust and rapid gene deletion construction method. Fungal Genet Biol 45:379–388

    CAS  PubMed  Google Scholar 

  • Garcia-Pedrajas MD, Nadal M, Denny T, Baeza-Montanez L, Paz Z, Gold SE (2010) DelsGate: a robust and rapid method for gene deletion. Methods Mol Biol 638:55–76

    CAS  PubMed  Google Scholar 

  • Gates CA, Cox MM (1988) FLP recombinase is an enzyme. Proc Natl Acad Sci U S A 85:4628–4632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh K, Van Duyne GD (2002) Cre-loxP biochemistry. Methods 28:374–383

    CAS  PubMed  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    CAS  PubMed  Google Scholar 

  • Gronlund JT, Stemmer C, Lichota J, Merkle T, Grasser KD (2007) Functionality of the β/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes. Plant Mol Biol 63:545–556

    CAS  PubMed  Google Scholar 

  • Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    CAS  PubMed  Google Scholar 

  • Guarneros G, Echols H (1970) New mutants of bacteriophage λ with a specific defect in excision from the host chromosome. J Mol Biol 47:565–574

    CAS  PubMed  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    PubMed Central  PubMed  Google Scholar 

  • Güldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Google Scholar 

  • Guo F, Wang Y, Zhang YZ (2007) Construction of two recombination yeast two-hybrid vectors by in vitro recombination. Mol Biotechnol 36:38–43

    CAS  PubMed  Google Scholar 

  • Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    CAS  PubMed  Google Scholar 

  • Hartmann T, Dümig M, Jaber BM, Szewczyk E, Olbermann P, Morschhäuser J, Krappmann S (2010) Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the β-rec/six site-specific recombination system. Appl Environ Microbiol 76:6313–6317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S (2011) Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 82:917–935

    CAS  PubMed  Google Scholar 

  • Hastie AR, Pruitt SC (2007) Yeast two-hybrid interaction partner screening through in vivo Cre-mediated binary interaction tag generation. Nucleic Acids Res 35:e141

    PubMed Central  PubMed  Google Scholar 

  • Hegemann JH, Heick SB (2011) Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 765:189–206

    CAS  PubMed  Google Scholar 

  • Hegemann JH, Güldener U, Kohler GJ (2006) Gene disruption in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 313:129–144

    CAS  PubMed  Google Scholar 

  • Hens K, Feuz JD, Deplancke B (2012) A high-throughput gateway-compatible yeast one-hybrid screen to detect protein-DNA interactions. Methods Mol Biol 786:335–355

    CAS  PubMed  Google Scholar 

  • Hirano N, Muroi T, Takahashi H, Haruki M (2011) Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 92:227–239

    CAS  PubMed  Google Scholar 

  • Hoess RH, Abremski K (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci U S A 81:1026–1029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayaram M (1985) Two-micrometer circle site-specific recombination: the minimal substrate and the possible role of flanking sequences. Proc Natl Acad Sci U S A 82:5875–5879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaiser AD, Masuda T (1970) Evidence for a prophage excision gene in λ. J Mol Biol 47:557–564

    CAS  PubMed  Google Scholar 

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    CAS  PubMed  Google Scholar 

  • Khrunyk Y, Munch K, Schipper K, Lupas AN, Kahmann R (2010) The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol 187:957–968

    CAS  PubMed  Google Scholar 

  • Kopke K, Hoff B, Kück U (2010) Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol 76:4664–4674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koresawa Y, Miyagawa S, Ikawa M, Matsunami K, Yamada M, Shirakura R, Okabe M (2000) Synthesis of a new Cre recombinase gene based on optimal codon usage for mammalian systems. J Biochem 127:367–372

    CAS  PubMed  Google Scholar 

  • Krappmann S (2006) Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends Microbiol 14:356–364

    CAS  PubMed  Google Scholar 

  • Krappmann S, Pries R, Gellissen G, Hiller M, Braus GH (2000) HARO7 encodes chorismate mutase of the methylotrophic yeast Hansenula polymorpha and is derepressed upon methanol utilization. J Bacteriol 182:4188–4197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krappmann S, Bayram Ö, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kretschmar M, Felk A, Staib P, Schaller M, Hess D, Callapina M, Morschhäuser J, Schäfer W, Korting HC, Hof H, Hube B, Nichterlein T (2002) Individual acid aspartic proteinases (Saps) 1-6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microb Pathog 32:61–70

    CAS  PubMed  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    PubMed  Google Scholar 

  • Kulkarni RD, Dean RA (2004) Identification of proteins that interact with two regulators of appressorium development, adenylate cyclase and cAMP-dependent protein kinase A, in the rice blast fungus Magnaporthe grisea. Mol Genet Genomics 270:497–508

    CAS  PubMed  Google Scholar 

  • Landy A (1989) Dynamic, structural, and regulatory aspects of λ site-specific recombination. Annu Rev Biochem 58:913–949

    CAS  PubMed  Google Scholar 

  • Langer SJ, Ghafoori AP, Byrd M, Leinwand L (2002) A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Res 30:3067–3077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebel K, MacPherson S, Turcotte B (2006) New tools for phenotypic analysis in Candida albicans: the WAR1 gene confers resistance to sorbate. Yeast 23:249–259

    CAS  PubMed  Google Scholar 

  • Leng Y, Wu C, Liu Z, Friesen TL, Rasmussen JB, Zhong S (2011) RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus. Mol Plant Pathol 12:289–298

    CAS  PubMed  Google Scholar 

  • Ma J, Bharucha N, Dobry CJ, Frisch RL, Lawson S, Kumar A (2008) Localization of autophagy-related proteins in yeast using a versatile plasmid-based resource of fluorescent protein fusions. Autophagy 4:792–800

    CAS  PubMed  Google Scholar 

  • Magnani E, Bartling L, Hake S (2006) From Gateway to MultiSite Gateway in one recombination event. BMC Mol Biol 7:46

    PubMed Central  PubMed  Google Scholar 

  • Mizutani O, Masaki K, Gomi K, Iefuji H (2012) Modified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 78:4126–4133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morschhäuser J, Michel S, Staib P (1999) Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 32:547–556

    PubMed  Google Scholar 

  • Nagels Durand A, Moses T, De Clercq R, Goossens A, Pauwels L (2012) A MultiSite Gateway vector set for the functional analysis of genes in the model Saccharomyces cerevisiae. BMC Mol Biol 13:30

    PubMed Central  PubMed  Google Scholar 

  • Nash HA, Robertson CA (1981) Purification and properties of the Escherichia coli protein factor required for λ integrative recombination. J Biol Chem 256:9246–9253

    CAS  PubMed  Google Scholar 

  • Nguyen LN, Trofa D, Nosanchuk JD (2009) Fatty acid synthase impacts the pathobiology of Candida parapsilosis in vitro and during mammalian infection. PLoS One 4:e8421

    PubMed Central  PubMed  Google Scholar 

  • Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A (1998) Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406

    PubMed Central  PubMed  Google Scholar 

  • Oliveira JM, van der Veen D, de Graaff LH, Qin L (2008) Efficient cloning system for construction of gene silencing vectors in Aspergillus niger. Appl Microbiol Biotechnol 80:917–924

    CAS  PubMed  Google Scholar 

  • Osterwalder M, Galli A, Rosen B, Skarnes WC, Zeller R, Lopez-Rios J (2010) Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat Methods 7:893–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pahirulzaman KA, Williams K, Lazarus CM (2012) A toolkit for heterologous expression of metabolic pathways in Aspergillus oryzae. Methods Enzymol 517:241–260

    CAS  PubMed  Google Scholar 

  • Pan R, Zhang J, Shen WL, Tao ZQ, Li SP, Yan X (2011) Sequential deletion of Pichia pastoris genes by a self-excisable cassette. FEMS Yeast Res 11:292–298

    CAS  PubMed  Google Scholar 

  • Papon N, Courdavault V, Clastre M, Simkin AJ, Crèche J, Giglioli-Guivarc'h N (2012) Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology 158:585–600

    CAS  PubMed  Google Scholar 

  • Park YN, Masison D, Eisenberg E, Greene LE (2011) Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast 28:673–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paz Z, Garcia-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montanez L, Gold SE (2011) One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol 48:677–684

    CAS  PubMed  Google Scholar 

  • Petersen LK, Stowers RS (2011) A Gateway MultiSite recombination cloning toolkit. PLoS One 6:e24531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian W, Song H, Liu Y, Zhang C, Niu Z, Wang H, Qiu B (2009) Improved gene disruption method and Cre-loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J Microbiol Methods 79:253–259

    CAS  PubMed  Google Scholar 

  • Radman-Livaja M, Biswas T, Ellenberger T, Landy A, Aihara H (2006) DNA arms do the legwork to ensure the directionality of λ site-specific recombination. Curr Opin Struct Biol 16:42–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2:e162

    PubMed Central  PubMed  Google Scholar 

  • Reuss O, Vik A, Kolter R, Morschhäuser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127

    CAS  PubMed  Google Scholar 

  • Rice PA, Mouw KW, Montano SP, Boocock MR, Rowland SJ, Stark WM (2010) Orchestrating serine resolvases. Biochem Soc Trans 38:384–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rojo F, Alonso JC (1994) A novel site-specific recombinase encoded by the Streptococcus pyogenes plasmid pSM19035. J Mol Biol 238:159–172

    CAS  PubMed  Google Scholar 

  • Rojo F, Alonso JC (1995) The β recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them. Nucleic Acids Res 23:3181–3188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rojo F, Weise F, Alonso JC (1993) Purification of the β product encoded by the Streptococcus pyogenes plasmid pSM19035. A putative DNA recombinase required to resolve plasmid oligomers. FEBS Lett 328:169–173

    CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Sheehan A, Roeder GS, Snyder M (1997) A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94:190–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saitoh K, Nishimura M, Kubo Y, Hayashi N, Minami E, Nishizawa Y (2008) Construction of a binary vector for knockout and expression analysis of rice blast fungus genes. Biosci Biotechnol Biochem 72:1380–1383

    CAS  PubMed  Google Scholar 

  • Sanchez-Martinez C, Perez-Martin J (2002) Site-specific targeting of exogenous DNA into the genome of Candida albicans using the FLP recombinase. Mol Genet Genomics 268:418–424

    CAS  PubMed  Google Scholar 

  • Saraya R, Krikken AM, Kiel JA, Baerends RJ, Veenhuis M, van der Klei IJ (2012) Novel genetic tools for Hansenula polymorpha. FEMS Yeast Res 12:271–278

    CAS  PubMed  Google Scholar 

  • Sasagawa T, Matsui M, Kobayashi Y, Otagiri M, Moriya S, Sakamoto Y, Ito Y, Lee CC, Kitamoto K, Arioka M (2011) High-throughput recombinant gene expression systems in Pichia pastoris using newly developed plasmid vectors. Plasmid 65:65–69

    CAS  PubMed  Google Scholar 

  • Sasse C, Morschhäuser J (2012) Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy. Methods Mol Biol 845:3–17

    CAS  PubMed  Google Scholar 

  • Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer B (1996) Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res 24:4608–4613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–12751

    CAS  PubMed  Google Scholar 

  • Schoberle TJ, Nguyen-Coleman CK, May GS (2013) Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi. Fungal Genet Biol 58–59:1–9

    PubMed  Google Scholar 

  • Senecoff JF, Bruckner RC, Cox MM (1985) The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. Proc Natl Acad Sci U S A 82:7270–7274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Servert P, Garcia-Castro J, Diaz V, Lucas D, Gonzalez MA, Martinez AC, Bernad A (2006) Inducible model for β-six-mediated site-specific recombination in mammalian cells. Nucleic Acids Res 34:e1

    PubMed Central  PubMed  Google Scholar 

  • Servert P, Diaz V, Lucas D, de la Cueva T, Rodriguez M, Garcia-Castro J, Alonso J, Martinez AC, Gonzalez M, Bernad A (2008) In vivo site-specific recombination using the β-rec/six system. Biotechniques 45:69–78

    CAS  PubMed  Google Scholar 

  • Shafran H, Miyara I, Eshed R, Prusky D, Sherman A (2008) Development of new tools for studying gene function in fungi based on the Gateway system. Fungal Genet Biol 45:1147–1154

    CAS  PubMed  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2006) Development of transformation system in Monascus purpureus using an autonomous replication vector with aureobasidin A resistance gene. Biotechnol Lett 28:115–120

    CAS  PubMed  Google Scholar 

  • Shimshek DR, Kim J, Hubner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32:19–26

    CAS  PubMed  Google Scholar 

  • Shu P, Johnson MJ (1948) The interdependence of medium constituents in citric acid production by submerged fermentation. J Bacteriol 56:577–585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slauch JM, Mahan MJ, Mekalanos JJ (1994) In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol 235:481–492

    CAS  PubMed  Google Scholar 

  • Smith MC, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307

    CAS  PubMed  Google Scholar 

  • Smith MC, Brown WR, McEwan AR, Rowley PA (2010) Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem Soc Trans 38:388–394

    CAS  PubMed  Google Scholar 

  • Staib P, Kretschmar M, Nichterlein T, Kohler G, Michel S, Hof H, Hacker J, Morschhäuser J (1999) Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 32:533–546

    CAS  PubMed  Google Scholar 

  • Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J (2000) Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci U S A 97:6102–6107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stemmer C, Fernandez S, Lopez G, Alonso JC, Grasser KD (2002) Plant chromosomal HMGB proteins efficiently promote the bacterial site-specific β-mediated recombination in vitro and in vivo. Biochemistry 41:7763–7770

    CAS  PubMed  Google Scholar 

  • Suzuki E, Nakayama M (2011) VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res 39:e49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki N, Inui M, Yukawa H (2007) Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:871–878

    CAS  PubMed  Google Scholar 

  • Szewczyk E, Kasuga T, Fan Z (2013) Efficient sequential repetitive gene deletions in Neurospora crassa employing a self-excising β-recombinase/six cassette. J Microbiol Methods 92:236–243

    CAS  PubMed  Google Scholar 

  • Toews MW, Warmbold J, Konzack S, Rischitor P, Veith D, Vienken K, Vinuesa C, Wei H, Fischer R (2004) Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY). Curr Genet 45:383–389

    CAS  PubMed  Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    CAS  PubMed  Google Scholar 

  • Ueno K, Uno J, Nakayama H, Sasamoto K, Mikami Y, Chibana H (2007) Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata. Eukaryot Cell 6:1239–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  • van den Berg MA (2011) Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl Microbiol Biotechnol 92:45–53

    CAS  PubMed  Google Scholar 

  • Van Mullem V, Wery M, De Bolle X, Vandenhaute J (2003) Construction of a set of Saccharomyces cerevisiae vectors designed for recombinational cloning. Yeast 20:739–746

    PubMed  Google Scholar 

  • Walhout AJ, Temple GF, Brasch MA, Hartley JL, Lorson MA, van den Heuvel S, Vidal M (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592

    CAS  PubMed  Google Scholar 

  • Waterhouse P, Griffiths AD, Johnson KS, Winter G (1993) Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res 21:2265–2266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watson AT, Garcia V, Bone N, Carr AM, Armstrong J (2008) Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 407:63–74

    CAS  PubMed  Google Scholar 

  • Weisberg RA, Enquist LW, Foeller C, Landy A (1983) Role for DNA homology in site-specific recombination. The isolation and characterization of a site affinity mutant of coliphage λ. J Mol Biol 170:319–342

    CAS  PubMed  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    CAS  PubMed  Google Scholar 

  • Yoon YG, Posfai G, Szybalski W, Kim SC (1998) Cre/loxP-mediated in vivo excision of large segments from yeast genome and their amplification based on the 2μ plasmid-derived system. Gene 223:67–76

    CAS  PubMed  Google Scholar 

  • Zhang DX, Lu HL, Liao X, Leger RJS, Nuss DL (2013) Simple and efficient recycling of fungal selectable markers genes with the Cre-loxP recombination system via anastomosis. Fungal Genet Biol 61:1–8

    Google Scholar 

  • Zhu T, Wang W, Yang X, Wang K, Cui Z (2009) Construction of two gateway vectors for gene expression in fungi. Plasmid 62:128–133

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author's research is funded by the German Research Foundation (KR 2294/3-1), the Microbiology Institute at the University Hospital of Erlangen and the University of Erlangen-Nürnberg (ELAN project MH-12-08-17-1); further support had been granted by the European Science Foundation via the FUMINOMICS Research Networking Programme (06-RNP-132). Prof. Dr. Christian Bogdan is thanked for critically reading the manuscript, as is all other members of the Microbiology Institute for support and assistance. I apologise to those whose work was not cited for the sake of conciseness. This review is dedicated to Livia Pauline for recombining my everyday life on a daily basis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Krappmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krappmann, S. Genetic surgery in fungi: employing site-specific recombinases for genome manipulation. Appl Microbiol Biotechnol 98, 1971–1982 (2014). https://doi.org/10.1007/s00253-013-5480-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5480-y

Keywords