Skip to main content

Advertisement

Log in

Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Increasing evidence demonstrates that commensal microorganisms in the human skin microbiome help fight pathogens and maintain homeostasis of the microbiome. However, it is unclear how these microorganisms maintain biological balance when one of them overgrows. The overgrowth of Propionibacterium acnes (P. acnes), a commensal skin bacterium, has been associated with the progression of acne vulgaris. Our results demonstrate that skin microorganisms can mediate fermentation of glycerol, which is naturally produced in skin, to enhance their inhibitory effects on P. acnes growth. The skin microorganisms, most of which have been identified as Staphylococcus epidermidis (S. epidermidis), in the microbiome of human fingerprints can ferment glycerol and create inhibition zones to repel a colony of overgrown P. acnes. Succinic acid, one of four short-chain fatty acids (SCFAs) detected in fermented media by nuclear magnetic resonance (NMR) analysis, effectively inhibits the growth of P. acnes in vitro and in vivo. Both intralesional injection and topical application of succinic acid to P. acnes-induced lesions markedly suppress the P. acnes-induced inflammation in mice. We demonstrate for the first time that bacterial members in the skin microbiome can undergo fermentation to rein in the overgrowth of P. acnes. The concept of bacterial interference between P. acnes and S. epidermidis via fermentation can be applied to develop probiotics against acne vulgaris and other skin diseases. In addition, it will open up an entirely new area of study for the biological function of the skin microbiome in promoting human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blank-Porat D, Gruss-Fischer T, Tarasenko N, Malik Z, Nudelman A, Rephaeli A (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett 256(1):39–48. doi:10.1016/j.canlet.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  • Burtenshaw JM (1942) The mechanism of self-disinfection of the human skin and its appendages. J Hyg (Lond) 42(2):184–210

    Article  CAS  Google Scholar 

  • Chakravortty D, Koide N, Kato Y, Sugiyama T, Mu MM, Yoshida T, Yokochi T (2000) The inhibitory action of butyrate on lipopolysaccharide-induced nitric oxide production in RAW 264.7 murine macrophage cells. J Endotoxin Res 6(3):243–7

    CAS  PubMed  Google Scholar 

  • Chitarra LG, Breeuwer P, Van Den Bulk RW, Abee T (2000) Rapid fluorescence assessment of intracellular pH as a viability indicator of Clavibacter michiganensis subsp. michiganensis. J Appl Microbiol 88(5):809–16

    Article  CAS  PubMed  Google Scholar 

  • Chow V, Nong G, St John FJ, Rice JD, Dickstein E, Chertkov O, Bruce D, Detter C, Brettin T, Han J, Woyke T, Pitluck S, Nolan M, Pati A, Martin J, Copeland A, Land ML, Goodwin L, Jones JB, Ingram LO, Shanmugam KT, Preston JF (2012) Complete genome sequence of Paenibacillus sp. strain JDR-2. Stand Genomic Sci 6(1):1–10. doi:10.4056/sigs.2374349 sigs.2374349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, Gallo RL (2010) Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol 130(1):192–200. doi:10.1038/jid.2009.243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336(6086):1255–62. doi:10.1126/science.1224203

    Article  CAS  PubMed  Google Scholar 

  • Cove JH, Holland KT, Cunliffe WJ (1983) Effects of oxygen concentration on biomass production, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. J Gen Microbiol 129(11):3327–34

    CAS  PubMed  Google Scholar 

  • Demaerel P, Van Hecke P, Van Oostende S, Baert AL, Jaeken J, Declercq PE, Eggermont E, Plets C (1994) Bacterial metabolism shown by magnetic resonance spectroscopy. Lancet 344(8931):1234–5

    Article  CAS  PubMed  Google Scholar 

  • Dudley R (2004) Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr Comp Biol 44(4):315–23. doi:10.1093/icb/44.4.315

    Article  CAS  PubMed  Google Scholar 

  • Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, Elashoff D, Erfe MC, Loncaric A, Kim J, Modlin RL, Miller JF, Sodergren E, Craft N, Weinstock GM, Li H (2013) Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol 133(9):2152–60. doi:10.1038/jid.2013.21jid201321

    Article  CAS  PubMed  Google Scholar 

  • Fluhr JW, Darlenski R, Surber C (2008) Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol 159(1):23–34. doi:10.1111/j.1365-2133.2008.08643.x

    Article  CAS  PubMed  Google Scholar 

  • Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR (2010) The human nasal microbiota and Staphylococcus aureus carriage. PLoS One 5(5):e10598. doi:10.1371/journal.pone.0010598

    Article  PubMed Central  PubMed  Google Scholar 

  • Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 8(4):435–54. doi:10.1586/eri.10.14

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorbach SL, Mayhew JW, Bartlett JG, Thadepalli H, Onderdonk AB (1976) Rapid diagnosis of anaerobic infections by direct gas–liquid chromatography of clinical speciments. J Clin Invest 57(2):478–84. doi:10.1172/JCI108300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–53. doi:10.1038/nrmicro2537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haider A, Shaw JC (2004) Treatment of acne vulgaris. JAMA 292(6):726–35. doi:10.1001/jama.292.6.726 292/6/726

    Article  CAS  PubMed  Google Scholar 

  • Huang CP, Liu YT, Nakatsuji T, Shi Y, Gallo RR, Lin SB, Huang CM (2008) Proteomics integrated with Escherichia coli vector-based vaccines and antigen microarrays reveals the immunogenicity of a surface sialidase-like protein of Propionibacterium acnes. Proteomics Clin Appl 2(9):1234–45. doi:10.1002/prca.200780103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imahiyerobo-Ip JI, Dinulos JG (2011) Changing the topography of acne with topical medications. Curr Opin Pediatr 23(1):121–5. doi:10.1097/MOP.0b013e3283425457

    Article  CAS  PubMed  Google Scholar 

  • Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465(7296):346–9. doi:10.1038/nature09074

    Article  CAS  PubMed  Google Scholar 

  • Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276(5321):2027–30

    Article  CAS  PubMed  Google Scholar 

  • Kanikkannan N, Kandimalla K, Lamba SS, Singh M (2000) Structure–activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem 7(6):593–608

    Article  CAS  PubMed  Google Scholar 

  • Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 324(3):353–60. doi:10.1007/s00441-005-0140-x

    Article  CAS  PubMed  Google Scholar 

  • Kim J (2005) Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211(3):193–8. doi:10.1159/000087011

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–20. doi:10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Kligman AM (1974) An overview of acne. J Invest Dermatol 62(3):268–87

    Article  CAS  PubMed  Google Scholar 

  • Layton AM, Dreno B, Gollnick HP, Zouboulis CC (2006) A review of the European Directive for prescribing systemic isotretinoin for acne vulgaris. J Eur Acad Dermatol Venereol 20(7):773–6. doi:10.1111/j.1468-3083.2006.01671.x

    Article  CAS  PubMed  Google Scholar 

  • Lemon KP, Armitage GC, Relman DA, Fischbach MA (2012) Microbiota-targeted therapies: an ecological perspective. Sci Transl Med 4(137):137rv5. doi:10.1126/scitranslmed.3004183

    Article  PubMed  Google Scholar 

  • Levine RM, Rasmussen JE (1983) Intralesional corticosteroids in the treatment of nodulocystic acne. Arch Dermatol 119(6):480–1

    Article  CAS  PubMed  Google Scholar 

  • Lindh JM, Terenius O, Faye I (2005) 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 71(11):7217–23. doi:10.1128/AEM.71.11.7217-7223.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu PF, Nakatsuji T, Zhu W, Gallo RL, Huang CM (2011) Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine 29(17):3230–8. doi:10.1016/j.vaccine.2011.02.036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo CW, Lai YK, Liu YT, Gallo RL, Huang CM (2011) Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting beta-hemolysin and CAMP factor. J Invest Dermatol 131(2):401–9. doi:10.1038/jid.2010.319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marino C, Stoughton RB (1982) Clinical use of a selective culture medium for wild and antibiotic-resistant Propionibacterium acnes. J Am Acad Dermatol 6(5):902–8. doi:10.1016/S0190-9622(82)80124-2

    Article  CAS  PubMed  Google Scholar 

  • Martin-Pelaez S, Costabile A, Hoyles L, Rastall RA, Gibson GR, La Ragione RM, Woodward MJ, Mateu E, Martin-Orue SM (2010) Evaluation of the inclusion of a mixture of organic acids or lactulose into the feed of pigs experimentally challenged with Salmonella typhimurium. Vet Microbiol 142(3–4):337–45. doi:10.1016/j.vetmic.2009.09.061

    Article  CAS  PubMed  Google Scholar 

  • Menon S, Bharadwaj R, Chowdhary AS, Kaundinya DV, Palande DA (2007) Rapid identification of non-sporing anaerobes using nuclear magnetic resonance spectroscopy and an identification strategy. Indian J Med Microbiol 25(4):330–5

    Article  CAS  PubMed  Google Scholar 

  • Moon SH, Roh HS, Kim YH, Kim JE, Ko JY, Ro YS (2012) Antibiotic resistance of microbial strains isolated from Korean acne patients. J Dermatol 39(10):833–7. doi:10.1111/j.1346-8138.2012.01626.x

    Article  CAS  PubMed  Google Scholar 

  • Moss CW, Dowell VR Jr, Lewis VJ, Schekter MA (1967) Cultural characteristics and fatty acid composition of Corynebacterium acnes. J Bacteriol 94(5):1300–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L (2005) Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 124(5):931–8. doi:10.1111/j.0022-202X.2005.23705.x

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuji T, Liu YT, Huang CP, Zoubouis CC, Gallo RL, Huang CM (2008a) Antibodies elicited by inactivated propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: relevance to therapy for acne vulgaris. J Invest Dermatol 128(10):2451–7. doi:10.1038/jid.2008.117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatsuji T, Liu YT, Huang CP, Zouboulis CC, Gallo RL, Huang CM (2008b) Vaccination targeting a surface sialidase of P. acnes: implication for new treatment of acne vulgaris. PLoS One 3(2):e1551

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakatsuji T, Shi Y, Zhu W, Huang CP, Chen YR, Lee DY, Smith JW, Zouboulis CC, Gallo RL, Huang CM (2008c) Bioengineering a humanized acne microenvironment model: proteomics analysis of host responses to Propionibacterium acnes infection in vivo. Proteomics 8(16):3406–15. doi:10.1002/pmic.200800044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatsuji T, Tang DC, Zhang L, Gallo RL, Huang CM (2011) Propionibacterium acnes CAMP factor and host acid sphingomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment. PLoS One 6(4):e14797. doi:10.1371/journal.pone.0014797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicoll TR, Jensen MM (1987) Staphylococcosis of turkeys. 5. Large-scale control programs using bacterial interference. Avian Dis 31(1):85–8

    Article  CAS  PubMed  Google Scholar 

  • Nishijima S, Kurokawa I, Katoh N, Watanabe K (2000) The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. J Dermatol 27(5):318–23

    CAS  PubMed  Google Scholar 

  • Ostling CE, Lindgren SE (1993) Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids. J Appl Bacteriol 75(1):18–24

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7(8):555–67. doi:10.1038/nrmicro2182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JS, Lee EJ, Lee JC, Kim WK, Kim HS (2007) Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol 7(1):70–7. doi:10.1016/j.intimp.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  • Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82(4):632–9

    CAS  PubMed  Google Scholar 

  • Rigo M, Alegre RM (2004) Isolation and selection of phenol-degrading microorganisms from industrial wastewaters and kinetics of the biodegradation. Folia Microbiol (Praha) 49(1):41–5

    Article  CAS  Google Scholar 

  • Ryssel H, Kloeters O, Germann G, Schafer T, Wiedemann G, Oehlbauer M (2009) The antimicrobial effect of acetic acid—an alternative to common local antiseptics? Burns 35(5):695–700. doi:10.1016/j.burns.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  • Scanlan PD, Buckling A, Kong W, Wild Y, Lynch SV, Harrison F (2012) Gut dysbiosis in cystic fibrosis. J Cyst Fibros 11(5):454–5. doi:10.1016/j.jcf.2012.03.007 S1569-1993(12)00046-X

    Article  PubMed  Google Scholar 

  • Schroder O, Opritz J, Stein J (2000) Substrate and inhibitor specificity of butyrate uptake in apical membrane vesicles of the rat distal colon. Digestion 62(2–3):152–8

    CAS  PubMed  Google Scholar 

  • Sebastian S, Phillip LE, Fellner V, Idziak ES (1996) Comparative assessment of bacterial inoculation and propionic acid treatment of aerobic stability and microbial populations of ensiled high-moisture ear corn. J Anim Sci 74(2):447–56

    CAS  PubMed  Google Scholar 

  • Shinefield HR, Ribble JC, Boris M (1971) Bacterial interference between strains of Staphylococcus aureus, 1960 to 1970. Am J Dis Child 121(2):148–52

    CAS  PubMed  Google Scholar 

  • Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y, Gallo RL, Huang CM (2013) Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One 8(2):e55380. doi:10.1371/journal.pone

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivakanesan R, Dawes EA (1980) Anaerobic glucose and serine metabolism in Staphylococcus epidermidis. J Gen Microbiol 118(1):143–57

    CAS  PubMed  Google Scholar 

  • Stein J, Zores M, Schroder O (2000) Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism. Eur J Nutr 39(3):121–5

    Article  CAS  PubMed  Google Scholar 

  • Uckay I, Dinh A, Vauthey L, Asseray N, Passuti N, Rottman M, Biziragusenyuka J, Riche A, Rohner P, Wendling D, Mammou S, Stern R, Hoffmeyer P, Bernard L (2010) Spondylodiscitis due to Propionibacterium acnes: report of twenty-nine cases and a review of the literature. Clin Microbiol Infect 16(4):353–8. doi:10.1111/j.1469-0691.2009.02801

    Article  CAS  PubMed  Google Scholar 

  • Ushijima T, Takahashi M, Ozaki Y (1984) Acetic, propionic, and oleic acid as the possible factors influencing the predominant residence of some species of Propionibacterium and coagulase-negative Staphylococcus on normal human skin. Can J Microbiol 30(5):647–52

    Article  CAS  PubMed  Google Scholar 

  • Vinolo MA, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3(10):858–76. doi:10.3390/nu3100858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei W, Cao Z, Zhu YL, Wang X, Ding G, Xu H, Jia P, Qu D, Danchin A, Li Y (2006) Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC Genomics 7:112. doi:10.1186/1471-2164-7-112

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitehead SS, Leavitt RW, Jensen MM (1993) Staphylococcosis of turkeys. 6. Development of penicillin resistance in an interfering strain of Staphylococcus epidermidis. Avian Dis 37(2):536–41

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DM, Jensen MM (1987) Staphylococcosis of turkeys. 4. Characterization of a bacteriocin produced by an interfering Staphylococcus. Avian Dis 31(1):80–4

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Bollinger Bollag W (2003) Aquaporin 3 colocates with phospholipase d2 in caveolin-rich membrane microdomains and is downregulated upon keratinocyte differentiation. J Invest Dermatol 121(6):1487–95. doi:10.1111/j.1523-1747.2003.12614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants (1R41AR064046-01 and 1R21AI088147). We thank Dr. Teruaki Nakatsuji for assistance for the 16S rRNA gene sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ming Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Kuo, S., Shu, M. et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol 98, 411–424 (2014). https://doi.org/10.1007/s00253-013-5394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5394-8

Keywords

Navigation