Skip to main content
Log in

The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nucleosome positioning within the promoter and coding regions of the cellobiohydrolase-encoding cbh1 gene of Trichoderma reesei was investigated. T. reesei is a filamentous fungus that is able to degrade dead plant biomass by secreting enzymes such as cellulases, a feature which is exploited in industrial applications. In the presence of different carbon sources, regulation of one of these cellulase-encoding genes, cbh1, is mediated by various transcription factors including CRE1. Deletion or mutation of cre1 caused an increase in cbh1 transcript levels under repressing conditions. CRE1 was shown to bind to several consensus recognition sequences in the cbh1 promoter region in vitro. Under repressing conditions (glucose), the cbh1 promoter and coding regions are occupied by several positioned nucleosomes. Transcription of cbh1 in the presence of the inducer sophorose resulted in a loss of nucleosomes from the coding region and in the re-positioning of the promoter nucleosomes which prevents CRE1 from binding to its recognition sites within the promoter region. Strains expressing a non-functional CRE1 (in strains with mutated CRE1 or cre1-deletion) exhibited a loss of positioned nucleosomes within the cbh1 coding region under repressing conditions only. This indicates that CRE1 is important for correct nucleosome positioning within the cbh1 coding region under repressing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aro N, Saloheimo A, Ilmén M, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314. doi:10.1074/jbc.M003624200

    Article  CAS  PubMed  Google Scholar 

  • Aro N, Ilmén M, Saloheimo A, Penttilä M (2003) ACE1 of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69:56–65. doi:10.1128/AEM.69.1.56-65.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arya G, Maitra A, Grigoryev SA (2010) A structural perspective on the where, how, why and what of nucleosome positioning. J Biomol Struct Dyn 27:803–819. doi:10.1080/07391102.2010.10508585

    Article  CAS  PubMed  Google Scholar 

  • Brosch G, Loidl P, Graessle S (2008) Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 32:409–439. doi:10.1111/j.1574-6976.2007.00100.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  • Clark DJ (2010) Nucleosome positioning, nucleosome spacing and the nucleosome code. J Biomol Struct Dyn 27:781–791. doi:10.1080/073911010010524945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cockerill PN (2011) Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J 278:2182–2210. doi:10.1111/j.1742-4658.2011.08128.x

    Article  CAS  PubMed  Google Scholar 

  • Cziferszky A, Mach RL, Kubicek CP (2002) Phosphorylation positively regulates DNA binding of the carbon catabolite repressor CRE1 of Hypocrea jecorina (Trichoderma reesei). J Biol Chem 277:14688–14694. doi:10.1074/jbc.M200744200

    Google Scholar 

  • Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46:564–574. doi:10.1016/j.fgb.2009.04.001

  • García I, Gonzalez R, Gómez D, Scazzocchio C (2004) Chromatin rearrangements in the prnD–prnB bidirectional promoter: dependence on transcription factors. Eukaryot Cell 3:144–156. doi:10.1128/EC.3.1.144-156.2004

    Google Scholar 

  • Gonzalez R, Scazzocchio C (1997) A rapid method for chromatin structure analysis in the filamentous fungus Aspergillus nidulans. Nucl Acids Res 25:3955–3956. doi:10.1093/nar/25.19.3955

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:134–160. doi:10.1186/1475-2859-11-134

    Google Scholar 

  • Ilmén M, Thrane C, Penttilä M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full length and a truncated mutant form. Mol Gen Genet 251:451–460. doi:10.1007/BF02172374

    PubMed  Google Scholar 

  • Ilmén M, Thrane C, Penttilä M (1998) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full length and a truncated mutant form. Mol Gen Genet 257(Corrigendum):386

    PubMed  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microb Biotechnol 26:389–407. doi:10.1007/s11274-009-0190-4

    Article  CAS  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:6834–6848. doi:10.1186/1754-6834-2-19

    Google Scholar 

  • Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106:16151–16156. doi:10.1073/pnas.0905848106

    Google Scholar 

  • Ling M, Qin Y, Li N, Liang Z (2009) Binding of two transcriptional factors, XYR1 and ACE1 in the promoter region of cellulase cbh1 gene. Biotechnol Lett 31:227–231. doi:10.1007/s10529-008-9857-4

    Google Scholar 

  • Liu T, Wang T, Li X, Liu X (2008) Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimisation. Acta Biochem Biophys Sin 40:158–165. doi:10.1111/j.1745-7270.2008.00388.x

  • Mach RL, Zeilinger Z (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60:515–522. doi:10.1007/s00253-002-1162-x

  • Mach RL, Seiboth B, Myasnikov A, Gonzalez R, Strauss J, Harkki AM, Kubicek CP (1995) The bgl1 gene of Trichoderma reesei QM9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Mol Microbiol 16:687–697. doi:10.1111/j.1365-2958.1995.tb02430.x

    Google Scholar 

  • Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL (2008) Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 74:6554–6562. doi:10.1128/AEM.01143-08

    Google Scholar 

  • Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21:152–154

    Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek C, Han CS, Ho I, Larrondo LF, Lopez de Leon A, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnol 26:553–560. doi:10.1038/nbt1403

    Google Scholar 

  • Mathieu M, Nikolaev I, Scazzocchio C, Felenbok B (2005) Patterns of nucleosomal organisation in the alc regulon of Aspergillus nidulans: roles of the AlcR transcriptional activator and the CreA global repressor. Mol Microbiol 56:535–548. doi:10.1111/j.1365-2958.2005.04559.x

    Google Scholar 

  • Montenecourt BS, Eveleigh DE (1979) Selective isolation of high yielding cellulase mutants of Trichoderma reesei. Adv Chem Ser 181:289–301. doi:10.1021/ba-1979-0181.ch014

  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75:4853–4860. doi:10.1128/AEM.00282-09

    Google Scholar 

  • Porciuncula JO, Furukawa T, Mori K, Shida Y, Hirakawa H, Tashiro K, Kuhara S, Nakagawa S, Morikawa Y, Ogasawara W (2013) Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan. Biosci Biotechnol Biochem 77:534–543. doi:10.1271/bbb.129794

    Google Scholar 

  • Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12:269–281. doi:10.1186/1471-2164-12-269

    Google Scholar 

  • Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y (2009) Evaluation and characterisation of Trichoderma reesei cellulase and xylanase promoters. Appl Microbiol Biot 82:899–908. doi:10.1007/s00253-008-1841-3

    Google Scholar 

  • Scazzocchio C, Ramón A (2008) Chromatin in the genus Aspergillus. In: Goldman GH, Osmani SA (eds) The aspergilli: genomics, medical aspects, biotechnology and research methods, vol 26. CRC, Boca Raton, pp 321–341

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799. doi:10.1007/s00253-010-2632-1

  • Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone–DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18:735–748. doi:10.1016/j.molcel.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Würleiter E, Mach RL (2006) XYR1 (Xylanase Regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5:2128–2137. doi:10.1128/EC.00211-06

    Google Scholar 

  • Stricker AR, Mach RL, de Graaff HL (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78:211–220. doi:10.1007/s00253-007-1322-0

  • Takashima S, Jikura H, Nakamura A, Masaki H, Uozumi T (1996) Analysis of CRE1 binding sites in the Trichoderma reesei cbh1 upstream region. FEMS Microbiol Lett 145:361–366. doi:10.1111/j.1574-6968.1996.tb08601.x

  • Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP (2003) Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Gen 270:46–55. doi:10.1007/s00438-003-0895-2

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from a BBSRC CASE studentship with associated support from Roal Oy (Finland), the BBSRC Sustainable Bioenergy Centre (BB/G01616X/1) and the Foundation for Biotechnical and Industrial Fermentation Research (Finland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Archer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ries, L., Belshaw, N.J., Ilmén, M. et al. The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei . Appl Microbiol Biotechnol 98, 749–762 (2014). https://doi.org/10.1007/s00253-013-5354-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5354-3

Keywords

Navigation