Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 4, pp 1547–1555 | Cite as

Preparation and diagnostic use of a novel recombinant single-chain antibody against rabies virus glycoprotein

  • Ruosen Yuan
  • Xiaoxu Chen
  • Yan Chen
  • Tiejun Gu
  • Hualong Xi
  • Ye Duan
  • Bo Sun
  • Xianghui Yu
  • Chunlai Jiang
  • Xintao Liu
  • Chunlai Wu
  • Wei Kong
  • Yongge Wu
Biotechnological products and process engineering

Abstract

Rabies virus (RABV) causes a fatal infectious disease, but effective protection may be achieved with the use of rabies immunoglobulin and a rabies vaccine. Virus-neutralizing antibodies (VNA), which play an important role in the prevention of rabies, are commonly evaluated by the RABV neutralizing test. For determining serum VNA levels or virus titers during the RABV vaccine manufacturing process, reliability of the assay method is highly important and mainly dependent on the diagnostic antibody. Most diagnostic antibodies are monoclonal antibodies (mAbs) made from hybridoma cell lines and are costly and time consuming to prepare. Thus, production of a cost-effective mAb for determining rabies VNA levels or RABV titers is needed. In this report, we describe the prokaryotic production of a RABV-specific single-chain variable fragment (scFv) protein with a His-tag (scFv98H) from a previously constructed plasmid in a bioreactor, including the purification and refolding process as well as the functional testing of the protein. The antigen-specific binding characteristics, affinity, and relative affinity of the purified protein were tested. The scFv98H antibody was compared with a commercial RABV nucleoprotein mAb for assaying the VNA level of anti-rabies serum samples from different sources or testing the growth kinetics of RABV strains for vaccine manufactured in China. The results indicated that scFv98H may be used as a novel diagnostic tool to assay VNA levels or virus titers and may be used as an alternative for the diagnostic antibody presently employed for these purposes.

Keywords

Rabies virus Glycoprotein Monoclonal antibody Virus-neutralizing antibody Single-chain Fv fragment 

Notes

Acknowledgments

We gratefully acknowledge Thi Sarkis for editorial support in the preparation of this manuscript.

References

  1. André F, Michael H, Thomas S (2013) Expression of recombinant antibodies. Front Immunol 4:217. doi: 10.3389/fimmu.2013.00217 Google Scholar
  2. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev 24(4):501–519. doi: 10.1007/s10555-005-6193-1 PubMedCrossRefGoogle Scholar
  3. Bakker ABH, Marissen WE, Kramer RA, Rice AB, Weldon WC, Niezgoda M, Hanlon CA, Thijsse S, Backus HHJ, De Kruif J (2005) Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J Virol 79(14):9062–9068. doi: 10.1128/JVI.79.14.9062-9068.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Beatty JD, Beatty BG, Vlahos WG (1987) Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 100(1–2):173–179PubMedCrossRefGoogle Scholar
  5. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426. doi: 10.1126/science.3140379, New York, NYPubMedCrossRefGoogle Scholar
  6. Bourhy H, Dautry-Varsat A, Hotez PJ, Salomon J (2010) Rabies, still neglected after 125 years of vaccination. PLoS Negl Trop Dis 4(11):e839. doi: 10.1371/journal.pntd.0000839 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bunschoten H, Gore M, Ivo JTM, Uytdehaag FGCM, Dietzschold B, Wunner WH, Osterhaus ADME (1989) Characterization of a new virus-neutralizing epitope that denotes a sequential determinant on the rabies virus glycoprotein. J Gen Virol 70(2):291–298. doi: 10.1099/0022-1317-70-2-291 PubMedCrossRefGoogle Scholar
  8. Cliquet F, Aubert M, Sagne L (1998) Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody. J Immunol Methods 212(1):79–87PubMedCrossRefGoogle Scholar
  9. Cliquet F, Sagne L, Schereffer J, Aubert M (2000) ELISA test for rabies antibody titration in orally vaccinated foxes sampled in the fields. Vaccine 18(28):3272–3279. doi: 10.1016/S0264-410X(00)00127-4 PubMedCrossRefGoogle Scholar
  10. Coulon P, Rollin P, Aubert M, Flamand A (1982) Molecular basis of rabies virus virulence. I. Selection of avirulent mutants of the CVS strain with anti-G monoclonal antibodies. J Gen Virol 61(1):97–100. doi: 10.1099/0022-1317-61-1-97 PubMedCrossRefGoogle Scholar
  11. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306. doi: 10.1016/j.biotechadv.2009.01.008 PubMedCrossRefGoogle Scholar
  12. Duan Y, Gu T, Jiang C, Yuan R, Zhang H, Hou H, Yu X, Chen Y, Zhang Y, Wu Y (2012) A novel disulfide-stabilized single-chain variable antibody fragment against rabies virus G protein with enhanced in vivo neutralizing potency. Mol Immunol 51(2):188–196. doi: 10.1016/j.molimm.2012.03.015 PubMedCrossRefGoogle Scholar
  13. Feyssaguet M, Dacheux L, Audry L, Compoint A, Morize J, Blanchard I, Bourhy H (2007) Multicenter comparative study of a new ELISA, PLATELIA™ RABIES II, for the detection and titration of anti-rabies glycoprotein antibodies and comparison with the rapid fluorescent focus inhibition test (RFFIT) on human samples from vaccinated and non-vaccinated people. Vaccine 25(12):2244–2251. doi: 10.1016/j.vaccine.2006.12.012 PubMedCrossRefGoogle Scholar
  14. Gu T, Wei W, Duan Y, Jiang C, Chen Y, Yu X, Wu J, Wu Y, Kong W (2011) Identification of binding epitope for anti-rabies virus glycoprotein single-chain Fv fragment FV57. Protein Pept Lett 18(11):1099–1106PubMedCrossRefGoogle Scholar
  15. Hanlon C, DeMattos C, DeMattos C, Niezgoda M, Hooper D, Koprowski H, Notkins A, Rupprecht C (2001) Experimental utility of rabies virus-neutralizing human monoclonal antibodies in post-exposure prophylaxis. Vaccine 19(28):3834–3842. doi: 10.1016/S0264-410X(01)00135-9 PubMedCrossRefGoogle Scholar
  16. Humphreys D, Glover D (2001) Therapeutic antibody production technologies: molecules, applications, expression and purification. Curr Opin Drug Discov Dev 4(2):172–185Google Scholar
  17. Jiang H, Xie Y, Burnette A, Roach J, Giardina SL, Hecht TT, Creekmore SP, Mitra G, Zhu J (2013) Purification of clinical-grade disulfide stabilized antibody fragment variable—Pseudomonas exotoxin conjugate (dsFv-PE38) expressed in Escherichia coli. Appl Microbiol Biotechnol:621–632. doi:  10.1007/s00253-012-4319-2
  18. Knobel DL, Cleaveland S, Coleman PG, Fèvre EM, Meltzer MI, Miranda MEG, Shaw A, Zinsstag J, Meslin FX (2005) Re-evaluating the burden of rabies in Africa and Asia. B World Health Organ 83(5):360–368. doi: 10.1590/S0042-96862005000500012 Google Scholar
  19. Kramer RA, Marissen WE, Goudsmit J, Visser TJ, Clijsters-Van der Horst M, Bakker AQ, de Jong M, Jongeneelen M, Thijsse S, Backus HHJ (2005) The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries. Eur J Immunol 35(7):2131–2145. doi: 10.1002/eji.200526134 PubMedCrossRefGoogle Scholar
  20. Liu X, Lin H, Tang Q, Li C, Yang S, Wang Z, Wang C, He Q, Cao B, Feng Z (2011) Characterization of a human antibody fragment Fab and its calcium phosphate nanoparticles that inhibit rabies virus infection with vaccine. PLoS One 6(5):e19848. doi: 10.1371/journal.pone.0019848 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Lombardi A, Sperandei M, Cantale C, Giacomini P, Galeffi P (2005) Functional expression of a single-chain antibody specific for the HER2 human oncogene in a bacterial reducing environment. Protein Expr Purif 44(1):10–15. doi: 10.1016/j.pep.2005.05.013 PubMedCrossRefGoogle Scholar
  22. MacDonald RA, Hosking CS, Jones CL (1988) The measurement of relative antibody affinity by ELISA using thiocyanate elution. J Immunol Methods 106(2):191–194. doi: 10.1016/0022-1759(88)90196-2 PubMedCrossRefGoogle Scholar
  23. Marissen WE, Kramer RA, Rice A, Weldon WC, Niezgoda M, Faber M, Slootstra JW, Meloen RH, Clijsters-van der Horst M, Visser TJ (2005) Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis. J Virol 79(8):4672–4678. doi: 10.1128/JVI.79.8.4672-4678.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Moore SM, Hanlon CA (2010) Rabies-specific antibodies: measuring surrogates of protection against a fatal disease. PLoS Negl Trop Dis 4(3):e595. doi: 10.1371/journal.pntd.0000595 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Muller BH, Lafay F, Demangel C, Perrin P, Tordo N, Flamand A, Lafaye P, Guesdon JL (1997) Phage-displayed and soluble mouse scFv fragments neutralize rabies virus. J Virol Methods 67(2):221–233. doi: 10.1016/S0166-0934(97)00099-2 PubMedCrossRefGoogle Scholar
  26. Ni Y, Tominaga Y, Honda Y, Morimoto K, Sakamoto S, Kawai A (1995) Mapping and characterization of a sequential epitope on the rabies virus glycoprotein which is recognized by a neutralizing monoclonal antibody, RG719. Med Microbiol Immunol 39(9):693CrossRefGoogle Scholar
  27. Ohlfest JR, Zellmer DM, Panyam J, Swaminathan SK, Oh S, Waldron NN, Toma S, Vallera DA (2012) Immunotoxin targeting CD133+ breast carcinoma cells. Drug Deliv and Transl Res: 195–204Google Scholar
  28. Prehaud C, Coulon P, Lafay F, Thiers C, Flamand A (1988) Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 62(1):1–7PubMedCentralPubMedGoogle Scholar
  29. Prosniak M, Faber M, Hanlon CA, Rupprecht CE, Hooper DC, Dietzschold B (2003) Development of a cocktail of recombinant-expressed human rabies virus-neutralizing monoclonal antibodies for postexposure prophylaxis of rabies. J Infect Dis 188(1):53–56. doi: 10.1086/375247 PubMedCrossRefGoogle Scholar
  30. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27(3):493–497Google Scholar
  31. Schumacher CL, Dietzschold B, Ertl H, Niu HS, Rupprecht CE, Koprowski H (1989) Use of mouse anti-rabies monoclonal antibodies in postexposure treatment of rabies. J Clin Invest 84(3):971–975. doi: 10.1172/JCI114260 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310. doi: 10.1263/jbb.99.303 PubMedCrossRefGoogle Scholar
  33. Smith JS, Yager PA, Baer GM (1973) A rapid reproducible test for determining rabies neutralizing antibody. Bull World Health Organ 48(5):535–541PubMedCentralPubMedGoogle Scholar
  34. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41(1):207–234. doi: 10.1016/j.pep.2005.01.016 PubMedCrossRefGoogle Scholar
  35. Yang J, Chen R, Wei J, Zhang F, Zhang Y, Jia L, Yan Y, Luo W, Cao Y, Yao L (2010) Production and characterization of a recombinant single-chain antibody against Hantaan virus envelop glycoprotein. Appl Microbiol Biotechnol 86(4):1067–1075. doi: 10.1007/s00253-009-2379-8 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ruosen Yuan
    • 1
  • Xiaoxu Chen
    • 1
  • Yan Chen
    • 1
  • Tiejun Gu
    • 1
  • Hualong Xi
    • 1
  • Ye Duan
    • 1
  • Bo Sun
    • 1
  • Xianghui Yu
    • 1
  • Chunlai Jiang
    • 1
  • Xintao Liu
    • 2
  • Chunlai Wu
    • 3
  • Wei Kong
    • 1
  • Yongge Wu
    • 1
  1. 1.National Engineering Laboratory for AIDS Vaccine, College of Life ScienceJilin UniversityChangchunChina
  2. 2.BCHT Biotechnology CompanyChangchunChina
  3. 3.School of Biosciences and BiotechnologyUniversity of CamerinoCamerinoItaly

Personalised recommendations