Skip to main content
Log in

A method to detect and quantify Phaeomoniella chlamydospora and Phaeoacremonium aleophilum DNA in grapevine-wood samples

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Grapevines are sensitive to a wide range of fungal pathogens, including agents such as Phaeomoniella chlamydospora and Phaeoacremonium aleophilum that cause tracheomycosis. In the present study, a procedure for DNA extraction from grapevine woody tissue is first evaluated and shown to be suitable for quantitative analysis. Next, a multiplex real-time PCR method targeting the β-tubulin gene of the pathogens and the actin gene of plant material is developed and its quantitative capability is verified. This protocol was evaluated in inoculated grapevine-wood samples and in young vines from a nursery and was found to be reliable and highly specific. Results obtained from inoculated cuttings show that the fungal colonization process must be considered regardless of the wood phenotype. An analysis of samples of young vines from the nursery shows that a high rate of contamination occurs at the basis of plants and that this contamination is associated with low quantitative values. This finding provides evidence that in vine nurseries, these fungi may be efficient soil-borne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Agustí-Brisach CD, Gramaje J, García-Jiménez J, Armengo J (2013) Detection of black-foot and Petri disease pathogens in soils of grapevine nurseries and vineyards using bait plants. Plant Soil 364:5–13

    Article  Google Scholar 

  • Aroca A, Raposo R (2007) PCR-based strategy to detect and identify species of Phaeoacremonium causing grapevine diseases. Appl Environ Microb 73:2911–2918

    Article  CAS  Google Scholar 

  • Aroca A, Raposo R (2009) Pathogenicity of Phaeoacremonium species on grapevines. J Phytopathol 157:413–419

    Article  Google Scholar 

  • Aroca A, Raposo R, Lunello P (2008) A biomarker for the identification of four Phaeoacremonium species using the β-tubulin gene as the target sequence. Appl Microbiol Biotechnol 80:1131–1140

    Article  PubMed  CAS  Google Scholar 

  • Aroca A, Gramaje J, Armengol J, Garcia-Jimenez J, Raposo R (2010) Evaluation of the grapevine nursery propagation process as a source of Phaeoacremonium spp. and Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in rootstock mother vines in Spain. Eur J Plant Pathol 126:165–174

    Article  Google Scholar 

  • Atallah ZK, Bae J, Jansky SH, Rouse DL, Stevenson R (2007) Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to verticillium wilt. Phytopathology 97:865–872

    Article  PubMed  CAS  Google Scholar 

  • Bertsch C, Larignon P, Farine S, Clement C, Fontaine F (2009) The spread of grapevine trunk disease. Science 324:721–721

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Ulate B, Rolshausen P, Cantu D (2013) Draft genome sequence of the ascomycete Phaeoacremonium aleophilum strain UCR-PA7, a causal agent of the Esca disease complex in grapevines. Genome Announc 1(3):e00339-13

    Google Scholar 

  • Bodles WJA, Fossdal CG, Woodward S (2006) Multiplex real-time PCR detection of pathogen colonization in the bark and wood of Picea sitchensis clones differing in resistance to Heterobasidion annosum. Tree Physiol 26:775–782

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51a:127–128

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) Rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edwards J, Constable F, Wiechel T, Salib S (2007) Comparison of the molecular tests—single PCR, nested PCR and quantitative PCR (SYBR® green and TaqMan®)—for detection of Phaeomoniella chlamydospora during grapevine nursery propagation. Phytopathol Mediterr 46:58–72

    CAS  Google Scholar 

  • Essakhi S, Mugnai L, Crous PW, Groenewald JZ, Surico G (2008) Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from Esca diseased grapevines. Persoonia 21:119–134

    Article  PubMed  CAS  Google Scholar 

  • Feliciano A, Gubler WD (2001) Histological investigations on infection of grape roots and shoots by Phaeoacremonium spp. Phytopathol Mediterr 40:387–393

    Google Scholar 

  • Fourie PH, Halleen F (2002) Investigation on the occurrence of Phaeomoniella chlamydospora in canes of rootstock mother vines. Australas Plant Pathol 31:425–426

    Article  Google Scholar 

  • Fourie PH, Halleen F (2004) Occurrence of grapevine trunk disease pathogens in rootstock mother plants in South Africa. Australas Plant Pathol 33:313–315

    Article  Google Scholar 

  • Gasparic MB, Tengs T, La Paz JL, Holst-Jensen A, Pla M, Esteve T, Zel J, Gruden K (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396:2023–2029

    Article  Google Scholar 

  • Gimenez-Jaime A, Aroca A, Raposo R, Garcia-Jimenez J, Armengol J (2006) Occurrence of fungal pathogens associated with grapevine nurseries and the decline of young vines in Spain. J Phytopathol 154:598–602

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microb 61:1323–1330

    CAS  Google Scholar 

  • Gramaje D, Armengol J (2011) Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Dis 95:1040–1055

    Article  Google Scholar 

  • Gramaje D, Armengol J, Mohemmadi H, Banihashemi Z, Mostert L (2009) Novel Phaeoacremonium species associated with Petri disease and esca of grapevine in Iran and Spain. Mycol 101:920–929

    Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucleic Acids Res 35:d332–d338

    Article  PubMed  CAS  Google Scholar 

  • Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL (2009) Strain-dependent variation in 18s ribosomal DNA copy numbers in Aspergillus fumigatus. J Clin Microbiol 47:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Hietala AM, Eikenes M, Kvaalen H, Solheim H, Fossdal CG (2003) Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Appl Environ Microb 69:4413–4420

    Article  CAS  Google Scholar 

  • Hietala AM, Nagy NE, Steffenrem A, Kvaalen H, Fossdal CG, Solheim H (2009) Spatial patterns in hyphal growth and substrate exploitation within Norway spruce stems colonized by the pathogenic white-rot fungus Heterobasidion parviporum. Appl Environ Microb 75:4069–4078

    Article  CAS  Google Scholar 

  • ISO (1999) ISO 2859–1. Sampling procedures for inspection by attributes. International Organization for Standardization, Geneva

    Google Scholar 

  • Kuntzmann PS, Villaume S, Larignon P, Bertsch C (2010) Esca, BDA and eutypiosis: foliar symptoms, trunk lesions and fungi observed in diseased vinestocks in two vineyards in Alsace. Vitis 49:71–76

    Google Scholar 

  • Laveau CA, Letouze A, Louvet G, Bastien S, Guerin-Dubrana L (2009) Differential aggressiveness of fungi implicated in Esca and associated diseases of grapevine in France. Phytopathol Mediterr 48:32–46

    Google Scholar 

  • Lecomte P, Peros JP, Blancard D, Bastien N, Delye C (2000) PCR assays that identify the grapevine dieback fungus Eutypa lata. Appl Environ Microb 66:4475–4480

    Article  CAS  Google Scholar 

  • Lecomte P, Darrieutort G, Liminana JM, Comont G, Muruamendiaraz A, Legorburu FJ, Choueiri E, Jreijiri F, Ei Amil R, Fermaud M (2012) New insights into Esca of grapevine: the development of foliar symptoms and their association with xylem discoloration. Plant Dis 96:924–934

    Article  Google Scholar 

  • Longo AV, Rodriguez D, Da Silva LD, Felipe Toledo L, Mendoza Almeralla C, Burrowes PA, Zamudio KL (2013) ITS1 copy number varies among Batrachochytrium dendrobatidis strains: implications for qPCR estimates of infection intensity from field-collected amphibian skin swabs. PLOS ONE 8(3):e59499

    Article  PubMed  CAS  Google Scholar 

  • Lorrain B, Ky I, Pasquier G, Jourdes M, Guerin-Dubrana L, Gény L, Rey P, Donèche B, Teissedre PL (2012) Effect of Esca disease on the phenolic and sensory attributes of cabernet sauvignon grapes, musts and wines. Aust J Grape Wine Res 18:64–72

    Article  CAS  Google Scholar 

  • Luque J, Martos S, Aroca A, Raposo R, Garcia-Figueres F (2009) Symptoms and fungi associated with declining mature grapevine plants in northeast Spain. J Plant Pathol 91:381–390

    Google Scholar 

  • Martín MT, Cobos R, Martín L, López-Enríquez L (2012) Real-time PCR detection of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum. Appl Environ Microb 78:3985–3991

    Article  Google Scholar 

  • Martos S, Torres E, Abdessamad El Bakali M, Raposo R, Gramaje D, Armengol J, Luque J (2011) Co-operational PCR coupled with dot blot hybridization for the detection of Phaeomoniella chlamydospora on infected grapevine wood. J Phytopathol 159:247–254

    Article  CAS  Google Scholar 

  • Mostert L (2006) Phylogeny and taxonomy of Phaeoacremonium and its relatives. Dissertation, Wageningen UR, Wageningen, The Nederlands

  • Mostert L, Halleen F, Fourie PH, Crous PW (2006a) A review of Phaeoacremonium species involved in Petri disease and Esca of grapevines. Phytopathol Mediterr 45:s12–s29

    Google Scholar 

  • Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW (2006b) Taxonomy and pathology of Togninia (diaporthales) and its Phaeoacremonium anamorphs. Stud Mycol 54:1–113

    Article  Google Scholar 

  • Mugnai L, Graniti A, Surico G (1999) Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Dis 83:404–418

    Article  Google Scholar 

  • Overton BE, Stewart EL, Qu X, Wenner NG, Christ BJ (2004) Qualitative real-time PCR SYBR® Green detection of Petri disease fungi. Phytopathol Mediterr 43:403–410

    CAS  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed  Google Scholar 

  • Retief E, Damm U, Van Niekerk M, McLeod A, Fourie PH (2005) A protocol for molecular detection of Phaeomoniella chlamydospora in grapevine wood sample. S Afr J Sci 101:139–142

    CAS  Google Scholar 

  • Retief E, McLeod A, Fourie PH (2006) Potential inoculum sources of Phaeomoniella chlamydospora in South African grapevine nurseries. Eur J Plant Pathol 115:331–339

    Article  Google Scholar 

  • Ridgway HJ, Sleight BE, Stewart A (2002) Molecular evidence for the presence of Phaeomoniella chlamydospora in New Zealand nurseries, and its detection in rootstock mothervines using species-specific PCR. Australas Plant Pathol 31:267–271

    Article  Google Scholar 

  • Ridgway HJ, Steyaert JM, Pottinger BM, Carpenter M, Nicol D, Stewart A (2005) Development of an isolate-specific marker for tracking Phaeomoniella chlamydospora infection in grapevines. Mycologia 97:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Rolshausen PE, Mahoney NE, Molyneux RJ, Gubler WD (2006) Reassessment of the species concept in Eutypa lata, the causal agent of Eutypa dieback of grapevine. Phytopathology 96:369–377

    Article  PubMed  CAS  Google Scholar 

  • Romanazzi G, Murolo S, Pizzichini L, Nardi S (2009) Esca in young and mature vineyards, and molecular diagnosis of the associated fungi. Eur J Plant Pathol 125:277–290

    Article  Google Scholar 

  • Schena L, Nigro F, Ippolito A, Gallitelli D (2004) Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol 110:893–908

    Article  CAS  Google Scholar 

  • Sherrill CB, Marshall DJ, Moser MJ, Larsen CA, Daude-Snow L, Prudent JR (2004) Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J Am Chem Soc 126:4550–4556

    Article  PubMed  CAS  Google Scholar 

  • Sparapano L, Bruno G, Graniti B (2001) Three-year observation of grapevines cross-inoculated with Esca-associated fungi. Phytopathol Mediterr 40:s376–s386

    Google Scholar 

  • Surico G (2009) Towards a redefinition of the diseases within the Esca complex of grapevine. Phytopathol Mediterr 48:5–10

    Google Scholar 

  • Tegli S, Bertelli E, Surico G (2000) Sequence analysis of ITS ribosomal DNA in five Phaeoacremonium species and development of a PCR-based assay for the detection of P. chlamydosporum and P. aleophilum in grapevine tissue. Phytopathol Mediterr 39:134–149

    CAS  Google Scholar 

  • Tellenbach C, Grünig CR, Sieber TN (2010) Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. Appl Environ Microb 76:5764–5772

    Article  CAS  Google Scholar 

  • Trouillas FP, Urbez-Torres J, Gubler WD (2010) Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102:319–336

    Article  PubMed  CAS  Google Scholar 

  • Urbez-Torres JR (2011) The status of Botryosphaeriaceae species infecting grapevines. Phytopathol Mediterr 50:s5–s45

    Google Scholar 

  • Urbez-Torres JR, Leavitt GM, Voegel TM, Gubler WD (2006) Identification and distribution of Botryosphaeria spp. associated with grapevine cankers in California. Plant Dis 90:1490–1503

    Article  CAS  Google Scholar 

  • Whiteman SA, Jaspers MV, Stewart A, Ridgway HJ (2002) Detection of Phaeomoniella chlamydospora in soil using species-specific PCR. N Z Plant Prot 55:139–145

    Google Scholar 

  • Yang J, Ruegger PM, McKenry MV, Becker JO, Borneman J (2012) Correlations between root-associated microorganisms and peach replant disease symptoms in a California soil. PLOS ONE 7(10):e46420

    Article  PubMed  CAS  Google Scholar 

  • Zanzotto A, Autiero F, Bellotto D, Dal Cortivo G, Lucchetta G, Borgo M (2007) Occurrence of Phaeoacremonium spp. and Phaeomoniella chlamydospora in grape propagation materials and young grapevines. Eur J Plant Pathol 119:183–192

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Pascal Lecomte, Gwenaëlle Comont and Philippe Larignon for providing isolates, and for their helpful informations on INRA UMR-SV collection strains. We thank Dr. Philippe Rolshausen for his helpful assistance on the improvement of this manuscript. This research was supported by Loire Vini Viti Distribution (LVVD, Z.A du Landreau, 49610 Mozé sur Louet, France), and “Agence Nationale de la Recherche et de la Technologie”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alban Jacques.

Additional information

Marie Lummerzheim and Alban Jacques contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouzoulet, J., Mailhac, N., Couderc, C. et al. A method to detect and quantify Phaeomoniella chlamydospora and Phaeoacremonium aleophilum DNA in grapevine-wood samples. Appl Microbiol Biotechnol 97, 10163–10175 (2013). https://doi.org/10.1007/s00253-013-5299-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5299-6

Keywords

Navigation