Applied Microbiology and Biotechnology

, Volume 97, Issue 24, pp 10499–10509 | Cite as

Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions

  • Hae-In Lee
  • Andrew J. Donati
  • Dittmar Hahn
  • Louis S. Tisa
  • Woo-Suk Chang
Applied microbial and cell physiology

Abstract

We investigated the effect of different nitrogen (N) sources on exopolysaccharide (EPS) production and composition by Frankia strain CcI3, a N2-fixing actinomycete that forms root nodules with Casuarina species. Frankia cells grown in the absence of NH4Cl (i.e., under N2-fixing conditions) produced 1.7-fold more EPS, with lower galactose (45.1 vs. 54.7 mol%) and higher mannose (17.3 vs. 9.7 mol%) contents than those grown in the presence of NH4Cl as a combined N-source. In the absence of the combined N-source, terminally linked and branched residue contents were nearly twice as high with 32.8 vs. 15.1 mol% and 15.1 vs. 8.7 mol%, respectively, than in its presence, while the content of linearly linked residues was lower with 52.1 mol% compared to 76.2 mol%. To find out clues for the altered EPS production at the transcriptional level, we performed whole-gene expression profiling using quantitative reverse transcription PCR and microarray technology. The transcription profiles of Frankia strain CcI3 grown in the absence of NH4Cl revealed up to 2 orders of magnitude higher transcription of nitrogen fixation-related genes compared to those of CcI3 cells grown in the presence of NH4Cl. Unexpectedly, microarray data did not provide evidence for transcriptional regulation as a mechanism for differences in EPS production. These findings indicate effects of nitrogen fixation on the production and composition of EPS in Frankia strain CcI3 and suggest posttranscriptional regulation of enhanced EPS production in the absence of the combined N-source.

Keywords

Exopolysaccharide (EPS) Frankia Symbiotic nitrogen fixation Nitrogen limitation Microarray qRT-PCR 

Supplementary material

253_2013_5277_MOESM1_ESM.pdf (195 kb)
ESM 1(PDF 194 kb)

References

  1. Agarwal AK, Keister L (1983) Physiology of ex-planta nitrogenase activity in Rhizobium japonicum. Appl Environ Microbiol 45:1592–1601PubMedGoogle Scholar
  2. Alloisio N, Felix S, Marechal J, Pujic P, Rouy Z, Vallenet D, Medigue C, Normand P (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plant 130:440–453CrossRefGoogle Scholar
  3. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho K (2010) The Frankia alni symbiotic transcriptome. Mol Plant-Microbe Interact 23:593–607Google Scholar
  4. Amann RI, Krumholz L, Stahl DA (1990a) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedGoogle Scholar
  5. Amann RI, Binder BJ, Olsen RJ, Chisholm SW, Devereux R, Stahl DA (1990b) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar
  6. Arnone JA III, Gordon JC (1997) Evidence for N feedback regulation of N2 fixation in Alnus glutinosa L. J Exp Bot 48:67–73CrossRefGoogle Scholar
  7. Arnone JAI, Kohls SJ, Baker DD (1994) Nitrate effects on nodulation and nitrogenase activity of actinorhizal Casuarina studied in split-root systems. Soil Biol Biochem 26:599–606Google Scholar
  8. Baker D, O'Keefe D (1984) A modified sucrose fractionation procedure for the isolation of frankiae from actinorhizal root-nodules and soil samples. Plant Soil 78:23–28CrossRefGoogle Scholar
  9. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedGoogle Scholar
  10. Beverley SM, Owens KL, Showalter M, Griffith CL, Doering TL, Jones VC, McNeil MR (2005) Eukaryotic UDP-galactopyranose mutase (GLF gene) in microbial and metazoal pathogens. Eukaryot Cell 4:1147–1154Google Scholar
  11. Bhagwat AA, Mithofer A, Pfeffer PE, Kraus C, Spickers N, Hotchkiss A, Ebel J, Keister DL (1999) Further studies of the role of cyclic β-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1 → 3)-β-glucosyl. Plant Physiol 119:1057–1064PubMedCrossRefGoogle Scholar
  12. Bickhart DM, Benson DR (2011) Transcriptomes of Frankia sp. strain CcI3 in growth transitions. BMC Microbiol 11:192–208PubMedCrossRefGoogle Scholar
  13. Bond G, Mackintosh AH (1975) Effect of nitrate-nitrogen on the nodule symbioses of Coriaria and Hippophae. P Roy Soc Lond B Bio 190:199–209CrossRefGoogle Scholar
  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  15. Brelles-Marino G, Boiardi JL (1996) Nitrogen limitation of chemostat-grown Rhizobium etli elicits higher infection-thread formation in Phaseolus vulgaris. Microbiology 142:1067–1070CrossRefGoogle Scholar
  16. Callaham D, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of actinomycete causing root nodulation in Comptonia. Science 199:899–902PubMedCrossRefGoogle Scholar
  17. Chang W-S, van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299Google Scholar
  18. Crannell WK, Tanaka Y, Myrold DD (1994) Calcium and pH interaction on root nodulation of nursery-grown red alder (Alnus rubra Bong.) seedlings by Frankia. Soil Biol Biochem 26:607–614CrossRefGoogle Scholar
  19. Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang W-S, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ (2007) Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 189:6751–6762PubMedCrossRefGoogle Scholar
  20. Dawson JO, Kowalski DG, Dart PJ (1989) Variation with soil depth, topographic position and host species in the capacity of soils from an Australian locale to nodulate Casuarina and Allocasuarina seedlings. Plant Soil 118:1–11CrossRefGoogle Scholar
  21. Donati AJ, Jeon J-M, Sangurdekar D, So J-S, Chang W-S (2011) Genome-wide transcriptional and physiological responses of Bradyrhizobium japonicum to paraquat-mediated oxidative stress. Appl Environ Micobiol 77:3633–3643CrossRefGoogle Scholar
  22. Dubois M, Giles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  23. Dunlap J, Minami E, Bhagwat AA, Keister DL, Stacey G (1996) Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic β-glucan synthesis. Mol Plant-Microbe Interact 9:546–555Google Scholar
  24. Gauthier D, Diem HG, Dommergues Y (1981) In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Appl Environ Microbiol 41:306–308PubMedGoogle Scholar
  25. Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54:2757–2767PubMedCrossRefGoogle Scholar
  26. Gonzalez JE, Reuhs BL, Walker GC (1996) Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc Natl Acad Sci USA 93:8636–8641PubMedCrossRefGoogle Scholar
  27. Griffiths AP, McCormick LH (1984) Effects of soil acidity on nodulation of Alnus glutinosa and viability of Frankia. Plant Soil 79:429–434CrossRefGoogle Scholar
  28. Hahn D, Zepp K, Zeyer J (1997) Whole cell hybridization as a tool to study Frankia populations in root nodules. Plant Physiol 99:696–706CrossRefGoogle Scholar
  29. Hellsten A, Huss-Danell K (2001) Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pratense L.). Acta Agr Scand B-S P 50:135–142Google Scholar
  30. Hotter GS, Scott DB (1991) Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. J Bacteriol 173:851–859PubMedGoogle Scholar
  31. Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405CrossRefGoogle Scholar
  32. Jain DK, Prevost D, Bordeleau LM (1990) Role of bacterial polysaccharides in the derepression of ex-planta nitrogenase activity with rhizobia. FEMS Microbiol Ecol 73:167–173CrossRefGoogle Scholar
  33. Kohls SJ, Baker DD (1989) Effects of substrate nitrate concentration on symbiotic nodule formation in actinorhizal plants. Plant Soil 118:171–179CrossRefGoogle Scholar
  34. Koplin R, Brisson JR, Whitfield C (1997) UDP-galactofuranose precursor required for formation of the lipopolysaccharide O antigen of Klebsiella pneumoniae serotype O1 is synthesized by the product of the rfbDKPO 1 gene. J Biol Chem 272:4121–4128PubMedCrossRefGoogle Scholar
  35. Kucho K, Hay AE, Normand P (2010) The determinants of the actinorhizal symbiosis. Microbes Environ 25:241–252PubMedCrossRefGoogle Scholar
  36. Lopez-Garcia SL, Vazquez TE, Favelukes G, Lodeiro AR (2001) Improved soybean root association of N-starved Bradyrhizobium japonicum. J Bacteriol 183:7241–7252PubMedCrossRefGoogle Scholar
  37. Mastronunzio JE, Benson DR (2010) Wild nodules can be broken: proteomics of Frankia in field-collected root nodules. Symbiosis 50:13–26CrossRefGoogle Scholar
  38. Mastronunzio JE, Huang Y, Benson DR (2009) Diminished exoproteome of Frankia spp. in culture and symbiosis. Appl Environ Microbiol 75:6721–6728PubMedCrossRefGoogle Scholar
  39. Meesters TM, Vangenesen ST, Akkermans ADL (1985) Growth, acetylene reduction activity and localization of nitrogenase in relation to vesicle formation in Frankia strains Cc117 and Cp12. Arch Microbiol 143:137–142CrossRefGoogle Scholar
  40. Merkle RK, Poppe I (1994) Carbohydrate composition analysis of glycoconjugates by gas–liquid chromatography/mass spectrometry. Meth Enzymol 230:1–15PubMedCrossRefGoogle Scholar
  41. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins J, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15PubMedCrossRefGoogle Scholar
  42. Parniske M, Kosch K, Werner D, Müller P (1993) exoB mutants of Bradyrhizobium japonicum with reduced competitiveness for nodulation of Glycine max. Mol Plant Microbe Interact 6:99–106CrossRefGoogle Scholar
  43. Parsons R, Silvester WB, Harris S, Gruijters WTM, Bullivant S (1987) Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol 83:728–731PubMedCrossRefGoogle Scholar
  44. Peltier P, Euzen R, Daniellou R, Nugier-Chauvin C, Ferrieres V (2008) Recent knowledge and innovations related to hexofuranosides: structure, synthesis and applications. Carbohydr Res 343:1897–1923PubMedCrossRefGoogle Scholar
  45. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  46. Quelas JI, López-García SL, Casabuono A, Althabegoiti MJ, Mongiardini EJ, Pérez-Giménez J, Couto A, Lodeiro AR (2006) Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots. Arch Microbiol 186:119–128PubMedCrossRefGoogle Scholar
  47. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66PubMedCrossRefGoogle Scholar
  48. Read RR, Costerton JW (1987) Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can J Microbiol 33:1080–1090PubMedCrossRefGoogle Scholar
  49. Richards MR, Lowary TL (2009) Chemistry and biology of galactofuranose-containing polysaccharides. Chembiochem 10:1920–1938PubMedCrossRefGoogle Scholar
  50. Sanders DAR, Staines AG, McMahon SA, McNeil MR, Whitfield C, Naismith JH (2001) UDP-galactopyranose mutase has a novel structure and mechanism. Nat Struct Biol 8:858–863PubMedCrossRefGoogle Scholar
  51. Sanginga N, Danso SKA, Bowen GD (1989) Nodulation and growth response of Allocasuarina and Casuarina species to phosphorus fertilization. Plant Soil 118:125–132CrossRefGoogle Scholar
  52. Schultz NA, Benson DR (1990) Enzymes of ammonia assimilation in hyphae and vesicles of Frankia sp. Strain CpI1. J Bacteriol 172:1380–1384PubMedGoogle Scholar
  53. Schwintzer CR (1985) Effect of spring flooding on endophyte differentiation, nitrogenase activity, root growth and shoot growth in Myrica gale. Plant Soil 87:109–124CrossRefGoogle Scholar
  54. Schwintzer CR (1990) Spore-positive and spore-negative nodules. In: Tjepkema JD, Schwintzer CR (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 178–195Google Scholar
  55. Stewart WDP, Bond G (1961) The effect of ammonium nitrogen on fixation of elemental nitrogen in Alnus and Myrica. Plant Soil 14:347–359CrossRefGoogle Scholar
  56. St-Laurent L, Bousquet J, Simon L, Lalonde M (1987) Separation of various Frankia strains in the Alnus and Elaeagnus host specificity groups using sugar analysis. Can J Microbiol 33:764–772CrossRefGoogle Scholar
  57. Taniuchi Y, Murakami A, Ohki K (2008) Whole-cell immunocytochemical detection of nitrogenase in cyanobacteria: improved protocol for highly fluorescent cells. Aquat Microb Ecol 51:237–247CrossRefGoogle Scholar
  58. Thomas KA, Berry AM (1989) Effects of continuous nitrogen application and nitrogen preconditioning on nodulation and growth of Ceanothus griseus var. horizontalis. Plant Soil 118:181–187CrossRefGoogle Scholar
  59. Tjepkema JD, Ormerod W, Torrey JG (1980) Vesicle formation and acetylene reduction activity in Frankia sp. Cpi1 cultured in defined nutrient media. Nature 287:633–635CrossRefGoogle Scholar
  60. Weston A, Sternt RJ, Lee RE, Nassau PM, Monsey D, Martin SL, Scherman MS, Besra GS, Duncan K, McNeil MR (1998) Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber Lung Dis 78:123–131CrossRefGoogle Scholar
  61. Yang Y (1995) The effect of phosphorus on nodule formation and function in the Casuarina-Frankia symbiosis. Plant Soil 176:161–169CrossRefGoogle Scholar
  62. York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1985) Isolation and characterization of plant cell walls and cell wall components. Meth Enzymol 118:3–40CrossRefGoogle Scholar
  63. Zhang XJ, Benson DR (1992) Utilization of amino acids by Frankia sp. strain Cpi1. Arch Microbiol 158:256–261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hae-In Lee
    • 1
  • Andrew J. Donati
    • 1
  • Dittmar Hahn
    • 2
  • Louis S. Tisa
    • 3
  • Woo-Suk Chang
    • 1
  1. 1.Department of BiologyUniversity of TexasArlingtonUSA
  2. 2.Department of BiologyTexas State UniversitySan MarcosUSA
  3. 3.Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamUSA

Personalised recommendations