Abstract
To clarify the effect of soy protein (SP) and fish meal (FM), compared to milk casein (MC), on the intestinal environment, we examined caecal environment of rats fed the test diets. Four-week-old rats were fed AIN-76-based diet containing 20 %, w/w MC, SP or FM for 16 days. Caecal organic acids were analysed by HPLC. Caecal putrefactive compounds (indole, phenol, H2S and ammonia) were analysed by colorimetric assays. Caecal microflora was determined by 16S rRNA gene-DGGE and pyrosequencing with bar-coded primers targeting the bacterial 16S rRNA gene. n-Butyric and lactic acid levels were high in rats fed SP and FM, respectively. Butyrate-producing bacteria, such as Oscillibacter, and lactate-producing bacteria, such as Lactobacillus, were detected in each diet group. Also, the putrefactive compound contents were high in rats fed SP and FM. In this study, both DGGE and pyrosequencing analyses were able to evaluate the dynamics of the intestinal microbiota. The results indicate that dietary proteins can alter the intestinal environment, affecting fermentation by the intestinal microbiota and the generation of putrefactive compounds.
This is a preview of subscription content, access via your institution.





References
An C, Takahashi H, Kimura B, Kuda T (2010) Comparison of PCR-DGGE and PCR-SSCP analysis for bacterial flora of Japanese traditional fermented fish products, aji-narezushi and iwashi-nukazuke. J Sci Food Agric 90:1796–1801. doi:10.1002/jsfa.4015
An C, Kuda T, Yazaki T, Takahashi H, Kimura B (2013a) FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat caecal microbiotas. Appl Environ Microbiol 79:860–866. doi:10.1128/AEM.02354-12
An C, Yazaki T, Takahashi H, Kuda T, Kimura B (2013b) Diet-induced changes in alginate-and laminaran-fermenting bacteria levels in the caecal contents of rats. J Funct Foods 5:389–394. doi:10.1016/j.jff.2012.11.011
Bezkorovainly A, Topuzian N (1981) Bifidobacterium bifidus var. Pennsylvanicus growth promoting activity of human milk-casein and its derivatives. Int J Biochem 13:585–590. doi:10.1016/0020-711X(81)90184-1
Bindels LB, Porporato P, Dewulf EM, Verrax J (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 107:1337–1344. doi:10.1038/bjc.2012.409
Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562. doi:10.1007/s00726-006-0477-9
Cotta MA, Whitehead WR, Falsen E, Moor E, Lawson PA (2009) Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 59:150–155. doi:10.1099/ijs.0.65676-0
Cummings JH, Englyst HN (1987) Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 45:1243–1255
Davila AM, Blanchier F, Gotteland M, Andriamihaja M, Benetti PH, Tomé D (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107. doi:10.1016/j.phrs.2012.11.005
De Filippo C, Cavalieri D, Paola MD, Ramazzotti M, Poullet JB, Massart S, Collinib S, Pieraccinie G, Lionetti P (2010) Impact of diet in shaping intestinal microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696. doi:10.1073/pnas.1005963107
Dethlefsen L, Huse S, Sogin ML, Relman DA (2009) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:280. doi:10.1371/journal.pbio.0060280
Eeckhaut V, Van Immerseel F, Pasmans F, De Brandt E, Haesebrouck F, Ducatelle R, Vandamme P (2010) Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. Int J Syst Evol Microbiol 60:1108–1112. doi:10.1099/ijs.0.015289-0
Elsden SR, Hilton MG (1979) Amino acid utilization patterns in clostridial taxonomy. Arch Microbiol 123:137–141
Giorgio P, Diego P, Elena B, Lorenzo M (2010) Molecular characterization of intestinal microbiota in infants fed with soy milk. J Pediatr Gastroenterol Nutr 51:71–76. doi:10.1097/MPG.0b013e3181dc8b02
Hamet HM, Preter VD, Windey K, Verbeke K (2012) Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol Gastrointest Liver Physiol 302:G1–G9. doi:10.1152/ajpgi.00048.2011
Kibe R, Sakamoto M, Yokota H, Ishikawa H, Aiba Y, Koga Y (2005) Movement and fixation of intestinal microbiota after administration of human feces to germfree mice. Appl Environ Microbiol 71:3171–3178. doi:10.1128/AEM.71.6.3171-3178.2005
Kuda T, Yano T, Matsuda N, Nishizawa M (2005) Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by intestinal microbiota in vitro and in rats. Food Chem 91:745–749. doi:10.1016/j.foodchem.2004.06.047
Kuda T, Kaneko N, Yano T, Mori M (2010) Induction of superoxide anion radical scavenging capacity in Japanese white radish juice and milk by Lactobacillus plantarum isolated from aji-narezushi and kaburazushi. Food Chem 120:517–522. doi:10.1016/j.foodchem.2009.10.046
Kuda T, Nakamura S, An C, Takahashi H, Kimura B (2012) Effect of soy and milk protein-related compounds on Listeria monocytogenes infection in human enterocyte Caco-2 cells and A/J mice. Food Chem 134:1719–1723. doi:10.1016/j.foodchem.2012.03.031
Kulagina EV, Efimov BA, Maximov PY, Kafarskaia LI, Chaplin AV, Shkoporov AN (2012) Species composition of Bacteroidales order bacteria in the feces of healthy people of various ages. Biosci Biotechnol Biochem 76:169–171. doi:10.1271/bbb.110434
Lee GH, Rhee MS, Chang DH, Lee J, Kim S, Yoon MH, Kim BC (2013) Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:1942–1946. doi:10.1099/ijs.0.041749-0
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. doi:10.1126/science.1155725
Lombard GL, Dowell VR (1983) Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems. J Clin Microbiol 18:609–613
Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, Moriyama EN, Walter J (2009) Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75:4175–4184. doi:10.1128/AEM.00380-09
Mead GC (1971) The amino acid-fermenting Clostridia. J Gen Microbiol 7:47–56. doi:10.1099/00221287-67-1-47
Ministry of Agriculture, Forestry and Fisheries in Japan (2009) http://www.maff.go.jp/j/syouan/tikusui/gyokai/g_kenko/tokucyo/index.html. Accessed 2 July 2013
Miriam B, Buenviaje MD (1989) Quantitative sputum culture and gram stain: pulmonary infection vs. colonization. Phil J Microbiol Infect Dis 18:28–35
Nakamura S, Kuda T, An C, Kanno T, Takahashi H, Kimura B (2012) Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to Caco-2 cells and A/J mice. Anaerobe 18:19–24. doi:10.1016/j.anaerobe.2011.11.006
Nyangale EP, Mottram DS, Gibson GR (2012) Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res 11:5373–5385. doi:10.1021/pr300637d
Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3:118–134. doi:10.3390/nu3010118
Sears CL (2005) A dynamic partnership: celebrating our intestinal flora. Anaerobe 11:247–251. doi:10.1016/j.anaerobe.2005.05.001
Sekirov I, Russell SL, Antunes CM, Finlay BB (2010) Intestinal microbiota in health and disease. Physiol Rev 90:859–904. doi:10.1097/MOG.0b013e32834d61e9
Turlington WH, Allee GL, Nelssen JL (1989) Effects of protein and carbohydrate source on digestibility and digesta flow rate in weaned pigs fed a high-fat. dry diet. J Anim Sci 67:2333–2340
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core intestinal microbiome in obese and lean twins. Nature 457:480–484. doi:10.1038/nature07540
Vahouny GV, Chalcarz W, Satchihtanandam S, Adamson I (1984) Effect of soy protein and casein intake on intestinal absorption and lymphatic transport of cholesterol and oleic acid. Am J Clin Nutr 40:1156–1164
Vanhoutte T, de Preter V, de Brandt E, Verbeke K, Swing J, Huys G (2006) Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and saccharomyces boulardii. Appl Environ Microbiol 72:5990–5997. doi:10.1128/AEM.00233-06
Vince AJ, Burridge SM (1980) Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. J Med Microbiol 13:177–191. doi:10.1099/00222615-13-2-177
Willing BP, Kassei V (2010) Host pathways for recognition: establishing gastrointestinal microbiota as relevant in animal health and nutrition. Livest Sci 133:82–91. doi:10.1016/j.livsci.2010.06.031
Willing BP, Russell SL, Finlay BB (2011) Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol 9:233–243. doi:10.1038/nrmicro2536
Windey K, De Preter V, Verbeke K (2012) Relevance of protein fermentation to intestinal health. Mol Nutr Food Res 56:184–196. doi:10.1079/NRR200127
Wylie KM, Truly RM, Sharpton TJ, Mihindukulasuriya KA (2012) Novel bacterial taxa in the human microbiome. PLoS ONE 7:e35294. doi:10.1371/journal.pone.0035294
Acknowledgment
The present study was supported in part by the Ministry of Education, Science, Sports and Culture, Japan, Grant-in-Aid for Scientific Research (C), # 25450300, 2013–2015, and was also supported by a 2013 Grant from Fuji Foundation for Protein Research (Osaka, Japan).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
An, C., Kuda, T., Yazaki, T. et al. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl Microbiol Biotechnol 98, 2779–2787 (2014). https://doi.org/10.1007/s00253-013-5271-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-013-5271-5
Keywords
- Casein
- Soy protein
- Fish meal
- Pyroseqeuncing
- Gut microbiota