Skip to main content
Log in

Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

2-Phenylethanol (2-PE) is a desirable compound in the food and perfumery industries with a characteristic rose fragrance. Until now, most of the studied biotechnological processes to produce 2-PE were conducted using natural 2-PE-producing yeasts. Only several researches were conducted in other genetically engineered microorganisms that simulated the Ehrlich pathway for the conversion of amino acids to fusel alcohols. Here, a novel metabolic pathway has been designed in Escherichia coli to produce 2-PE, using the Rosa hybrid phenylacetaldehyde synthase (PAAS), a pyridoxal 5′-phosphate (PLP)-dependent enzyme capable of transforming l-phenylalanine (l-phe) into phenylacetaldehyde by decarboxylation and oxidation. To overcome the enzyme insolubility in E. coli, several plasmids and host strains were tested for their expression ability. The desired results were obtained by using the pTYB21 plasmid containing the intein tag from the Saccharomyces cerevisiae VMA1. It was discovered that the intein PAAS activity is temperature-dependent, working well in the range of 25 to 30 °C but losing most of its activity at 37 °C. When external PLP cofactor was added, the cells produced 0.39 g l-1 2-PE directly from l-phe. In addition, a biotransformation that was based only on internal de novo PLP synthesis produced 0.34 g l-1 2-PE, thus creating for the first time an E. coli strain that can produce 2-PE from l-phe without the need for exterior cofactor additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achmon Y, Goldshtein J, Margel S, Fishman A (2011) Hydrophobic microspheres for in situ removal of 2-phenylethanol from yeast fermentation. J Microencapsul 28(7):628–638

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    Article  PubMed  CAS  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408

    Article  PubMed  CAS  Google Scholar 

  • Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50(21):4402–4410

    Article  PubMed  CAS  Google Scholar 

  • Berkmen M (2012) Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 82(1):240–251

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu M-Q (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192(2):271–281

    Article  PubMed  CAS  Google Scholar 

  • de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Factories 8(1):26

    Article  Google Scholar 

  • Eshkol N, Sendovski M, Bahalul M, Katz-Ezov T, Kashi Y, Fishman A (2009) Production of 2-phenylethanol from l-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106(2):534–542

    Article  PubMed  CAS  Google Scholar 

  • Etschmann M, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Farhi M, Lavie O, Masci T, Hendel-Rahmanim K, Weiss D, Abeliovich H, Vainstein A (2010) Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Mol Biol 72(3):235–245

    Article  PubMed  CAS  Google Scholar 

  • Fiedler M, Horn C, Bandtlow C, Schwab ME, Skerra A (2002) An engineered IN-1 Fab fragment with improved affinity for the Nogo-A axonal growth inhibitor permits immunochemical detection and shows enhanced neutralizing activity. Protein Eng 15(11):931–941

    Article  PubMed  CAS  Google Scholar 

  • Fu TF, di Salvo M, Schirch V (2001) Distribution of B6 vitamers in Escherichia coli as determined by enzymatic assay. Anal Biochem 298(2):314–321

    Article  PubMed  CAS  Google Scholar 

  • García-Fruitós E, Vázquez E, Díez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde A (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30(2):65–70

    Article  PubMed  Google Scholar 

  • Ghatge MS, Contestabile R, di Salvo ML, Desai JV, Gandhi AK, Camara CM, Florio R, González IN, Parroni A, Schirch V, Safo MK (2012) Pyridoxal 5′-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. PLoS ONE 7(7):e41680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Ya T, Gepstein S, Giovannoni JJ, Katzir N, Lewinsohn E (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61(4):1111–1123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hansted JG, Pietikainen L, Hog F, Sperling-Petersen HU, Mortensen KK (2011) Expressivity tag: a novel tool for increased expression in Escherichia coli. J Biotechnol 155(3):275–283

    Article  PubMed  CAS  Google Scholar 

  • Hazelwood LA, Daran J-M, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259–2266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirata H, Ohnishi T, Ishida H, Tomida K, Sakai M, Hara M, Watanabe N (2012) Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. J Plant Physiol 169(5):444–451

    Article  PubMed  CAS  Google Scholar 

  • Hwang JY, Park J, Seo JH, Cha M, Cho BK, Kim J, Kim BG (2009) Simultaneous synthesis of 2–phenylethanol and L–homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnol Bioeng 102(5):1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9(2):174–180

    Article  PubMed  CAS  Google Scholar 

  • Jenck JF, Agterberg F, Droescher MJ (2004) Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem 6(11):544–556

    Article  CAS  Google Scholar 

  • Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield DM, Cooper AJL, Schloss JV, Pichersky E, Vainstein A, Dudareva N (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281(33):23357–23366

    Article  PubMed  CAS  Google Scholar 

  • Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K (2012) Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol 78(17):6203–6216

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lobstein J, Emrich C, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Factories 11(1):56

    Article  CAS  Google Scholar 

  • Lucchini JJ, Bonnaveiro N, Cremieux A, Goffic F (1993) Mechanism of bactericidal action of phenethyl alcohol in Escherichia coli. Curr Microbiol 27(5):295–300

    Article  CAS  Google Scholar 

  • Mohd-Hairul A, Chan WS, Parameswari N, Gwendoline ECL, Abdullah JO (2010) Putative, phenylacetaldehyde synthase transcript of vanda mimi palmer: sequence and expression analysis. Int J Bot 6(4):424–432

    Article  CAS  Google Scholar 

  • Notarnicola B, Hayashi K, Curran MA, Huisingh D (2012) Progress in working towards a more sustainable agri-food industry. J Clean Prod 28:1–8

    Article  CAS  Google Scholar 

  • Ponniah K, Loo TS, Edwards PJB, Pascal SM, Jameson GB, Norris GE (2010) The production of soluble and correctly folded recombinant bovine β-lactoglobulin variants A and B in Escherichia coli for NMR studies. Protein Expr Purif 70(2):283–289

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113(7):4611–4632

    Article  PubMed  CAS  Google Scholar 

  • Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, Asai T, Dohra H, Hara M, Watanabe N (2007) Production of 2-phenylethanol in roses as the dominant floral scent compound from l-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. Biosci Biotechnol Biochem 71(10):2408–2419

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning a laboratoory manual, vol 3, 3rd edn. Cold Spring Harbor, New York

  • Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem 58(4):2260–2265

    Article  PubMed  CAS  Google Scholar 

  • Torrens-Spence MP, Liu P, Ding H, Harich K, Gillaspy G, Li J (2013) Biochemical evaluation of the decarboxylation and decarboxylation–deamination activities of plant aromatic amino acid decarboxylases. J Biol Chem 288(4):2376–2387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yin J, Li G, Ren X, Herrler G (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127(3):335–347

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89(3):573–583

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was part of the Bioflavour COST Action FA0907 and was partly supported by the Alexander Goldberg Memorial Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Fishman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achmon, Y., Ben-Barak Zelas, Z. & Fishman, A. Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Appl Microbiol Biotechnol 98, 3603–3611 (2014). https://doi.org/10.1007/s00253-013-5269-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5269-z

Keywords

Navigation