Skip to main content

Advertisement

Log in

TRAIL and microRNAs in the treatment of prostate cancer: therapeutic potential and role of nanotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Disruption of spatiotemporal behavior of intracellular signaling cascades including tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-mediated signaling in prostate cancer has gained tremendous attention in the past few years. There is an increasing effort in translating the emerging information about TRAIL-mediated signaling obtained through experimental and preclinical data to clinic. Fascinatingly, novel targeting approaches are being developed to enhance the tissue- or subcellular-specific delivery of drugs with considerable focus on prostate cancer. These applications have the potential to revolutionize prostate cancer therapeutic strategies and include the accumulation of drugs in target tissue as well as the selection of internalizing ligands for enhanced receptor-mediated uptake of drugs. In this mini-review, we outline outstanding developments in therapeutic strategies based on the regulation and/or targeting of TRAIL pathway for the treatment of prostate cancer. Moreover, microRNAs (miRNAs), with potential transcriptional and posttranscriptional regulation of gene expression, will be presented for their potential in prostate cancer treatment. Emphasis has been given to the use of delivery approaches, especially based on nanotechnology. Considerably, enhanced information regarding miRNA regulation of TRAIL-mediated signaling in prostate cancer cells may provide potential biomarkers for the characterization of patients as responders and nonresponders of TRAIL-based therapy and could provide rationalized basis for combination therapies with TRAIL death receptor-targeting drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, Aneja R (2011) Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release 149(3):314–322

    Article  PubMed  CAS  Google Scholar 

  • Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109(26):E1695–E1704

    Article  PubMed  CAS  Google Scholar 

  • Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park E-S, Lee KC, Youn YS (2012) Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 33(5):1536–1546

    Article  PubMed  CAS  Google Scholar 

  • Basile L, Pignatello R, Passirani C (2012) Active targeting strategies for anticancer drug nanocarriers. Curr Drug Deliv 9(3):255–268

    Article  PubMed  CAS  Google Scholar 

  • Biray Avcı Ç, Özcan İ, Balcı T, Özer Ö, Gündüz C (2013) Design of polyethylene glycol–polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells. Cell Biol Int. doi:10.1002/cbin.10157

    PubMed  Google Scholar 

  • Bo Y, Guo G, Yao W (2013) miRNA-mediated tumor specific delivery of TRAIL reduced glioma growth. J Neurooncol 112(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Boll K, Reiche K, Kasack K, Mörbt N, Kretzschmar A, Tomm J, Verhaegh G, Schalken J, von Bergen M, Horn F (2012) MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 32(3):277–285

    Article  PubMed  Google Scholar 

  • Cattel L, Ceruti M, Dosio F (2004) From conventional to stealth liposomes: a new frontier in cancer chemotherapy. J Chemother 16(Suppl 4):94–97

    PubMed  CAS  Google Scholar 

  • Chen J, Yang B, Cheng X, Qiao Y, Tang B, Chen G, Wei J, Liu X, Cheng W, Du P (2012) Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Sci 103(2):325–333

    Article  PubMed  CAS  Google Scholar 

  • Chiyomaru T, Yamamura S, Fukuhara S, Hidaka H, Majid S, Saini S, Arora S, Deng G, Shahryari V, Chang I (2013) Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PloS One 8(3):e58929

    Article  PubMed  CAS  Google Scholar 

  • Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F, Domingo JC (2011) Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm 8(1):104–116

    Article  PubMed  CAS  Google Scholar 

  • de Antonellis P, Medaglia C, Cusanelli E, Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini F, Galeone A, De Rosa G, Virgilio A, Scognamiglio I, Sciro M, Basso G, Schulte JH, Cinalli G, Iolascon A, Zollo M (2011) MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 6(9): e24584

    Google Scholar 

  • De Miguel D, Basáñez G, Sánchez D, Malo PGN, Marzo I, Larrad L, Naval J, Pardo JN, Anel A, Martinez-Lostao L (2013) Liposomes decorated with Apo2L/TRAIL overcome chemoresistance of human hematologic tumor cells. Mol Pharm 10(3):893–904

    Article  PubMed  Google Scholar 

  • De Rosa G, La Rotonda MI (2009) Nano and microtechnologies for the delivery of oligonucleotides with gene silencing properties. Molecules 14(8):2801–2823

    Google Scholar 

  • De Rosa G, De Stefano D, Galeone A (2010) Oligonucleotide delivery in cancer therapy. Expert Opin Drug Deliv 7(11):1263–1278

    Google Scholar 

  • Ding B, Wu X, Fan W, Wu Z, Gao J, Zhang W, Ma L, Xiang W, Zhu Q, Liu J (2011) Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int J Nanomedicine 6:1991–2005

    PubMed  CAS  Google Scholar 

  • Fan H, Hu Q-D, Xu F-J, Liang W-Q, Tang G-P, Yang W-T (2012) In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL. Biomaterials 33(5):1428–1436

    Article  PubMed  CAS  Google Scholar 

  • Farooqi AA, Bhatti S, Ismail M (2012a) TRAIL and vitamins: opting for keys to castle of cancer proteome instead of open sesame. Cancer Cell Int 12(1):22

    Article  PubMed  CAS  Google Scholar 

  • Farooqi AA, Rana A, Riaz AM, Khan A, Ali M, Javed S, Mukhtar S, Minhaj S, Rao JR, Rajpoot J (2012b) NutriTRAILomics in prostate cancer: time to have two strings to one's bow. Mol Biol Rep 39(4):4909–4914

    Article  PubMed  CAS  Google Scholar 

  • Fattal E, De Rosa G (2008) Polymeric nano and microparticles for the delivery of antisense oligonucleotides and SiRNA. In: Nancy Smyth Templeton (ed) Gene and cell therapy: therapeutic mechanisms and strategies, 3rd edn. Taylor & Francis Group, CRC, Boca Raton.

  • Gabizon A, Martin F (1997) Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Drugs 54(4):15–21

    Article  PubMed  CAS  Google Scholar 

  • Ghosh R, Singh LC, Shohet JM, Gunaratne PH (2013) A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34(3):807–816

    Article  PubMed  CAS  Google Scholar 

  • Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ (2012) αvβ3 Integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt (IV) prodrug. ACS Nano 6(5):4530–4539

    Article  PubMed  CAS  Google Scholar 

  • Gu G, Xia H, Hu Q, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q (2013) PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 34(1):196–208

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Fan L, Ren J, Pang Z, Ren Y, Li J, Wen Z, Qian Y, Zhang L, Ma H (2012) Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer. Int J Nanomedicine 7:1449–1460

    PubMed  CAS  Google Scholar 

  • He L, Yao H, Fan L, Liu L, Qiu S, Li X, Gao J, Hao C (2012) MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3. Genet Mol Res 12(2):1012–1021

    Article  Google Scholar 

  • Holgado MA, Martin-Banderas L, Alvarez-Fuentes J, Fernandez-Arevalo M, Arias JL (2012) Drug targeting to cancer by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 19(19):3188–3195

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Jiang Q, Jin X, Shen J, Wang K, Li Y, Xu F, Tang G, Li Z (2013) Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 34(9):2265–2276

    Article  PubMed  CAS  Google Scholar 

  • Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y, Schetter AJ, Watkins SK, Hurwitz AA, Dorsey TH, Stephens RM, Croce CM, Ambs S (2013) MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene 32(35):4139–4147

    Google Scholar 

  • Jin H, Yu Y, Chrisler WB, Xiong Y, Hu D, Lei C (2012) Delivery of microRNA-10b with polylysine nanoparticles for inhibition of breast cancer cell wound healing. Breast Cancer (Auckl) 6:9–19

    Google Scholar 

  • Kim JK, Choi K-J, Lee M, M-h J, Kim S (2012a) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33(1):207–217

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Chadalapaka G, Pathi SS, Jin U-H, Lee J-S, Park Y-Y, Cho S-G, Chintharlapalli S, Safe S (2012b) Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther 11(9):1852–1862

    Article  PubMed  CAS  Google Scholar 

  • Lee AL, Dhillon SH, Wang Y, Pervaiz S, Fan W, Yang YY (2011a) Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles. Mol Biosyst 7(5):1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Lee AL, Wang Y, Pervaiz S, Fan W, Yang YY (2011b) Synergistic anticancer effects achieved by co-delivery of TRAIL and paclitaxel using cationic polymeric micelles. Macromol Biosci 11(2):296–307

    Article  PubMed  CAS  Google Scholar 

  • Li L, Xie X, Luo J, Liu M, Xi S, Guo J, Kong Y, Wu M, Gao J, Xie Z (2012) Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion. Mol Ther 20(12):2326–2334

    Article  PubMed  CAS  Google Scholar 

  • Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383(3):280–285

    Article  PubMed  CAS  Google Scholar 

  • Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, Lee KC (2011) Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials 32(13):3538–3546

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Han Y, Fu H, Liu M, Wu J, Chen X, Zhang S, Chen Y (2013) Construction and expression of sTRAIL–melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli. Appl Microbiol Biotechnol 97(7):2877–2884

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1):271–284

    Article  PubMed  CAS  Google Scholar 

  • Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G, Dahiya R (2010) MicroRNA-205–directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 116(24):5637–5649

    Article  PubMed  CAS  Google Scholar 

  • Marra M, Salzano G, Leonetti C, Porru M, Franco R, Zappavigna S, Liguori G, Botti G, Chieffi P, Lamberti M (2012) New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol Adv 30(1):302–309

    Article  PubMed  CAS  Google Scholar 

  • Marra M, Salzano G, Leonetti C, Tassone P, Scarsella M, Zappavigna S, Calimeri T, Franco R, Liguori G, Cigliana G (2011) Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine 7(6):955–964

    Article  PubMed  CAS  Google Scholar 

  • Moghimi S, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478

    Article  PubMed  CAS  Google Scholar 

  • Na SJ, Chae SY, Lee S, Park K, Kim K, Park JH, Kwon IC, Jeong SY, Lee KC (2008) Stability and bioactivity of nanocomplex of TNF-related apoptosis-inducing ligand. Int J Pharm 363(1):149–154

    Article  PubMed  CAS  Google Scholar 

  • Nanta R, Kumar D, Meeker D, Rodova M, Van Veldhuizen P, Shankar S, Srivastava R (2013) NVP-LDE-225 (erismodegib) inhibits epithelial–mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating Bmi-1 and microRNA-128. Oncogenesis 2(4):e42

    Article  PubMed  CAS  Google Scholar 

  • Nimmanapalli R, Perkins CL, Orlando M, O'Bryan E, Nguyen D, Bhalla KN (2001) Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 61(2):759–763

    PubMed  CAS  Google Scholar 

  • Pan G, Ni J, Wei Y-F, G-l Y, Gentz R, Dixit VM (1997a) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327):815–818

    Article  PubMed  CAS  Google Scholar 

  • Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997b) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Jia T, Zhang Y, Zhang K, Zhang R, Li J, Wang L (2012) MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 7:5957–5967

    Article  PubMed  CAS  Google Scholar 

  • Patron JP, Fendler A, Bild M, Jung U, Müller H, Arntzen MØ, Piso C, Stephan C, Thiede B, Mollenkopf H-J (2012) MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS One 7(4):e35345

    Article  PubMed  CAS  Google Scholar 

  • Perlstein B, Finniss SA, Miller C, Okhrimenko H, Kazimirsky G, Cazacu S, Lee HK, Lemke N, Brodie S, Umansky F (2013) TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo. Neuro Oncol 15(1):29–40

    Article  PubMed  CAS  Google Scholar 

  • Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G (2010) Identification of the miR-106b 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3(117):ra29

    Article  PubMed  Google Scholar 

  • Reis ST, Pontes-Junior J, Antunes AA, Dall'Oglio MF, Dip N, Passerotti CC, Rossini GA, Morais DR, Nesrallah AJ, Piantino C (2012) miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 12(1):14

    Google Scholar 

  • Salzano G, Marra M, Porru M, Zappavigna S, Abbruzzese A, La Rotonda M, Leonetti C, Caraglia M, De Rosa G (2011) Self-assembly nanoparticles for the delivery of bisphosphonates into tumors. Int J Pharm 403(1):292–297

    Article  PubMed  CAS  Google Scholar 

  • Sanna V, Sechi M (2012) Nanoparticle therapeutics for prostate cancer treatment. Maturitas 73(1):27–32

    Article  PubMed  CAS  Google Scholar 

  • Schneider P, Thome M, Burns K, Bodmer J-L, Hofmann K, Kataoka T, Holler N, Tschopp J (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7(6):831–836

    Article  PubMed  CAS  Google Scholar 

  • Schramedei K, Mörbt N, Pfeifer G, Läuter J, Rosolowski M, Tomm J, von Bergen M, Horn F, Brocke-Heidrich K (2011) MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 30(26):2975–2985

    Article  PubMed  CAS  Google Scholar 

  • Semple SC, Klimuk SK, Harasym TO, Dos Santos N, Ansell SM, Wong KF, Maurer N, Stark H, Cullis PR, Hope MJ, Scherrer P (2001) Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta 1510(1-2):152–166

    Google Scholar 

  • Seymour L (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9(2):135–187

    PubMed  CAS  Google Scholar 

  • Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821

    Article  PubMed  CAS  Google Scholar 

  • Shi GH, D-w Y, X-d Y, S-l Z, Dai B, H-l Z, Y-j S, Zhu Y, Y-p Z, W-j X (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31(7):867–873

    Article  PubMed  CAS  Google Scholar 

  • Shi XB, Xue L, Yang J, Ma A-H, Zhao J, Xu M, Tepper CG, Evans CP, Kung H-J, deVere White RW (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 104(50):19983–19988

    Article  PubMed  CAS  Google Scholar 

  • Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ (2011) miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 71(5):538–549

    Article  PubMed  CAS  Google Scholar 

  • Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR, Nune SK, Casteel SW, Smith CJ, Vimal J (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci U S A 109(31):12426–12431

    Article  PubMed  CAS  Google Scholar 

  • Skidan I, Miao B, Thekkedath RV, Dholakia P, Degterev A, Torchilin V (2009) In vitro cytotoxicity of novel pro-apoptotic agent DM-PIT-1 in PEG-PE-based micelles alone and in combination with TRAIL. Drug Deliv 16(1):45–51

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Layer R, Mueller A, Cichewicz M, Negishi M, Paschal B, Dutta A (2013a) Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene. doi:10.1038/onc.2013.77

    Google Scholar 

  • Sun K, Deng H-J, Lei S-T, Dong J-Q, Li G-X (2013b) miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol 19(14):2197–2207

    Article  PubMed  CAS  Google Scholar 

  • Sun NF, Q-y M, Tian A-l H, S-y WR-h, Liu Z-x XL (2012a) Nanoliposome-mediated FL/TRAIL double-gene therapy for colon cancer: in vitro and in vivo evaluation. Cancer Lett 315(1):69–77

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, Ren J, Qian Y, Zhang Q, Chen J (2012b) Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 33(3):916–924

    PubMed  CAS  Google Scholar 

  • Szlachcic A, Pala K, Zakrzewska M, Jakimowicz P, Wiedlocha A, Otlewski J (2012) FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation. Int J Nanomedicine 7:5915–5927

    PubMed  CAS  Google Scholar 

  • Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, Prenter S, Harvey H, Domingo-Fernández R, Bray IM (2012) Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 7(5):e38129

    Article  PubMed  CAS  Google Scholar 

  • Verdoodt B, Neid M, Vogt M, Kuhn V, Liffers S-T, Palisaar R-J, Noldus J, Tannapfel A, Mirmohammadsadegh A (2013) MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. Int J Oncol 43(1):307–314

    PubMed  CAS  Google Scholar 

  • Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16(17):5386–5397

    Article  PubMed  CAS  Google Scholar 

  • Yu R, Mandlekar S, Ruben S, Ni J, Kong AT (2000) Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in androgen-independent prostate cancer cells. Cancer Res 60(9):2384–2389

    PubMed  CAS  Google Scholar 

  • Zhao Y, Duan S, Zeng X, Liu C, Davies NM, Li B, Forrest ML (2012) Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells. Mol Pharm 9(6):1705–1716

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Li Y, Wang L, Yang H, Wang Q, Qi H, Li S, Zhou P, Liang P, Wang Q (2013) microRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer. J Exp Clin Cancer Res 32(1):10

    Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Röhl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441(7089):111–114

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge and appreciate the efforts of Miss Maira Mariam for English language editing and better presentation of the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammad Ahmad Farooqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqi, A.A., De Rosa, G. TRAIL and microRNAs in the treatment of prostate cancer: therapeutic potential and role of nanotechnology. Appl Microbiol Biotechnol 97, 8849–8857 (2013). https://doi.org/10.1007/s00253-013-5227-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5227-9

Keywords

Navigation