Skip to main content

Advertisement

Log in

Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A Lolium perenne ice-binding protein (LpIBP) demonstrates superior ice recrystallization inhibition (IRI) activity and has proposed applications in cryopreservation, food texturing, as well as in being a “green” gas hydrate inhibitor. Recombinant production of LpIBP has been previously conducted in bacterial and yeast systems for studies of protein characterization, but large-scale applications have been hitherto limited due to high production costs. In this work, a codon-optimized LpIBP was recombinantly expressed and secreted in a novel one-step vector system from the nuclear genome of the green microalga Chlamydomonas reinhardtii. Both mixotrophic and photoautotrophic growth regimes supported LpIBP expression, indicating the feasibility of low-cost production using minimal medium, carbon dioxide, and light energy as input. In addition, multiple growth and bioproduct extraction cycles were performed by repetitive batch cultivation trials, demonstrating the potential for semi-continuous production and biomass harvesting. Concentrations of recombinant protein reached in this proof of concept approach were sufficient to demonstrate IRI activity in culture media without additional purification or concentration, with activity further verified by thermal hysteresis and morphology assays. The incorporation of the recombinant LpIBP into a model gas hydrate offers the promise that algal production may eventually find application as a “green” hydrate inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    Article  PubMed  CAS  Google Scholar 

  • Davies PL, Sykes BD (1997) Antifreeze proteins. Curr Opin Struct Biol 7(6):828–834

    Article  PubMed  CAS  Google Scholar 

  • Duman JG (1994) Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta Protein Struct Mol Enzymol 1206(1):129–135

    Article  CAS  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30(3):322–328

    Article  Google Scholar 

  • Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4):873–883

    Article  PubMed  CAS  Google Scholar 

  • Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr Opin Plant Biol 7(2):159–165

    Article  PubMed  CAS  Google Scholar 

  • Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algea. Expert Opin Biol Ther 5(2):1471–2598

    Article  Google Scholar 

  • Gordienko R, Ohno H, Singh VK, Jia Z, Ripmeester JA, Walker VK (2010) Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates. PLoS ONE 5(2):e8953

    Article  PubMed  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Ewart KV (1995) Antifreeze proteins and their potential use in frozen foods. Biotech Adv 13(3):375–402

    Article  CAS  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9(8):399–405

    Article  PubMed  CAS  Google Scholar 

  • Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1(1):81–98

    Google Scholar 

  • Heitzer M, Zschoernig B (2007) Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system. BioTech 43:324–332

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  PubMed  CAS  Google Scholar 

  • Hutner SH, Provasoli L, Schatz A, Haskins CP (1950) Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philos Soc 94(2):152–170

    CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87(3):1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Knight CA (2000) Adding to the antifreeze agenda. Nature 406(6793):249–251

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25(1):55–60

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotech 21(3):238–243

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4(12):957–970

    Article  PubMed  CAS  Google Scholar 

  • Kumble KD, Demmer J, Fish S, Hall C, Corrales S, DeAth A, Elton C, Prestidge R, Luxmanan S, Marshall CJ, Wharton DA (2008) Characterization of a family of ice-active proteins from the ryegrass, Lolium perenne. Cryobiology 57(3):263–268

    Article  PubMed  CAS  Google Scholar 

  • Lauersen KJ, Brown A, Middleton A, Davies PL, Walker VK (2011) Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne. Cryobiology 62(3):194–201

    Article  PubMed  CAS  Google Scholar 

  • Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167(2):101–110

    Article  PubMed  CAS  Google Scholar 

  • Marshall CB, Chakrabartty A, Davies PL (2005) Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of alpha-helices. J Biol Chem 280(18):17920–17929

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotech 18(2):126–133

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat VR, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SPD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riaeo-Pachan DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  PubMed  CAS  Google Scholar 

  • Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 583(4):815–819

    Article  PubMed  CAS  Google Scholar 

  • Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416(5):713–724

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from the international DNA sequence databases: status for the year. Nucleic Acids Res 28:292

    Article  PubMed  CAS  Google Scholar 

  • Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57(6):1140–1150

    Article  PubMed  CAS  Google Scholar 

  • Pudney PDA, Buckley SL, Sidebottom CM, Twigg SN, Sevilla MP, Holt CB, Roper D, Telford JH, McArthur AJ, Lillford PJ (2003) The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne). Arch Biochem Biophys 410(2):238–245

    Article  PubMed  CAS  Google Scholar 

  • Puigbo P, Guzmon E, Romeu A, Garcia-Vallvo S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:126–131

    Article  Google Scholar 

  • Rasala BA, Mayfield SP (2011) The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioengineered 2(1):50–54

    Article  Google Scholar 

  • Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS ONE 7(8):e43349

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74(6):2589–2593

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Morgan-Kiss R (2013) Separate origins of ice-binding proteins in antarctic Chlamydomonas species. PLoS ONE 8(3):e59186, 1-6

    Google Scholar 

  • Rosales-Mendoza S, Paz-Maldonado L, Soria-Guerra R (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31(3):479–494

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worrall D, Hubbard R, Lillford P (2000) Heat-stable antifreeze protein from grass. Nature 406(6793):256

    Article  PubMed  CAS  Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32(10):1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010a) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28(2):126–128

    Article  PubMed  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010b) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15(10):554–564

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardii. Proc Natl Acad Sci U S A 46(1):83–91

    Article  PubMed  CAS  Google Scholar 

  • Tyshenko MG, Doucet D, Davies PL, Walker VK (1997) The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 15(9):887–890

    Article  PubMed  CAS  Google Scholar 

  • Wharton D, Barrett J, Goodall G, Marshall C, Ramløv H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51(2):198–207

    Article  PubMed  CAS  Google Scholar 

  • Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL (2010) Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61(3):327–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the CLIB Graduate Cluster Industrial Biotechnology (Federal Ministry of Science & Technology North Rhine Westphalia, Germany (to K.J.L.)), the Deutsche Forschungsgemeinschaft (DFG KR-1586/5-2 to H.B.) for funding and a Natural Sciences and Engineering Research Council of Canada Discovery grant. The authors would also like to express thanks to Julie Choi and Kristy Moniz for their assistance with ice crystal analyses, and Angelika Schemel and Dr. Sonja Siwiora for assistance with culture media processing. The authors would also like to thank Prof. R. Bock for providing C. reinhardtii strain UVM4.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Kruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauersen, K.J., Vanderveer, T.L., Berger, H. et al. Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii . Appl Microbiol Biotechnol 97, 9763–9772 (2013). https://doi.org/10.1007/s00253-013-5226-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5226-x

Keywords

Navigation