Abstract
Bacillus atrophaeus CAB-1 displays a high inhibitory activity against various fungal pathogens and suppresses cucumber powdery mildew and tomato gray mold. We extracted and identified lipopeptides and secreted proteins and volatile compounds produced by strain CAB-1 to investigate the mechanisms involved in its biocontrol performance. In vitro assays indicated all three types of products contributed to the antagonistic activity against the fungal pathogen Botrytis cinerea. Each of these components also effectively prevented the occurrence of the cucumber powdery mildew caused by Sphaerotheca fuliginea under greenhouse conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry revealed that the major bioactive lipopeptide was fengycin A (C15–C17). We isolated the crude-secreted proteins of CAB-1 and purified a fraction with antifungal activity. This protein sequence shared a high identity with a putative phage-related pre-neck appendage protein, which has not been reported as an antifungal factor. The volatile compounds produced by CAB-1 were complex, including a range of alcohols, phenols, amines, and alkane amides. O-anisaldehyde represented one of the most abundant volatiles with the highest inhibition on the mycelial growth of B. cinerea. To our knowledge, this is the first report on profiling three types of antifungal substances in Bacilli and demonstrating their contributions to plant disease control.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112:159–174. doi:10.1111/j.1365-2672.2011.05182.x
Andersen RA, Hamilton-Kemp TR, Hildebrand DF, McCracken C, Collins RW, Fleming PD (1994) Structure-antifungal activity relationships among volatile C-6 and C-9 aliphatic-aldehydes, ketones, and alcohols. J Agric Food Chem 42:1563–1568. doi:10.1021/jf00043a033
Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53:122–128. doi:10.1016/j.biocontrol.2009.11.010
Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Maerk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186. doi:10.1128/AEM.02069-07
Chaurasia B, Pandey A, Palni LM, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81. doi:10.1016/j.micres.2004.09.013
Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513. doi:10.1016/j.micres.2008.08.007
Dunlap CA, Schisler DA, Price NP, Vaughn SF (2011) Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. J Microbiol 49:603–609. doi:10.1007/s12275-011-1044-y
Farag MA, Ryu C, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268. doi:10.1016/j.phytochem.2006.07.021
Fernando W, Ramarathnam R, Krishnamoorthy A, Savchuk S (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964. doi:10.1016/j.soilbio.2004.10.021
Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627
Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272:91–98. doi:10.1111/j.1574-6968.2007.00743.x
Huang CJ, Chen CY (2008) Synergistic interactions between chitinase ChicCW and fungicides against plant fungal pathogens. J Microbiol Biotech 18:784–787
Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360. doi:10.1007/s00203-006-0199-0
Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. doi:10.1007/s00253-008-1760-3
Kavitha S, Senthilkumar S, Gnanamanickam S, Inayathullah M, Jayakumar R (2005) Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem 40:3236–3243. doi:10.1016/j.procbio.2005.03.060
Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52:613–619
Li J, Yang Q, Zhao LH, Zhang SM, Wang YX, Zhao XY (2009) Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J Zhejiang Univ Sci B 10:264–272. doi:10.1631/jzus.B0820341
Li BQ, Lu XY, Guo QG, Qian CD, Li SZ, Ma P (2010a) Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1. Scientia Agricultura Sinica 43:3547–3554
Li ZJ, Li BQ, Lu XY, Qian CD, Guo QG, Li SZ, Ma P (2010b) Research on the producing condition and stability of antifungal substance from biocontrol bacterium strain CAB-1. J Anhui Agric Sci 38(11):5700–5702,5777
Liu WW, Zhao LJ, Wang C, Mu W, Liu F (2009) Bioactive evaluation and application of antifungal volatiles generated by five soil bacteria. Acta Phytophy Sinica 36:97–105
Liu B, Huang LL, Buchenauer H, Kang ZS (2010) Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pestic Biochem Physiol 98:305–311. doi:10.1016/j.pestbp.2010.07.001
Magetdana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the Synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051. doi:10.1016/0300-9084(92)90002-V
Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899. doi:10.1007/s00203-012-0823-0
Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi:10.1016/j.tim.2007.12.009
Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38. doi:10.1007/s00253-005-1940-3
Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 23:1716–1728. doi:10.1007/s13361-012-0437-4
Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. doi:10.1016/j.copbio.2010.12.003
Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563
Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440. doi:10.1094/MPMI-20-4-0430
Ryu C, Farag M, Hu C, Reddy M, Wei H, Pare P, Kloepper J (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932. doi:10.1073/pnas.0730845100
Ryu C, Farag M, Hu C, Reddy M, Kloepper J, Pare P (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp. 103.026583
Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch C 54c:859–866
Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. doi:10.1039/b507392h
Shi L, Guo QG, Li BQ, Lu XY, Li SZ, Ma P (2013) Screening and identification of an antifungal chitinolvtic bacterium and its chitinase encoding gene cloning and prokaryotic expressiong. Acta Phytophy Sinica (in press)
Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi:10.1111/j.1365-2958.2005.04587.x
Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin- a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901
Wan M, Li G, Zhang J, Jiang D, Huang H (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biolo Control 46:552–559. doi:10.1016/j.biocontrol.2008.05.015
Wong JH, Hao J, Cao Z, Qiao M, Xu H, Bai Y, Ng TB (2008) An antifungal protein from Bacillus amyloliquefaciens. J Appl Microbiol 105:1888–1898. doi:10.1111/j.1365-2672.2008.03917.x
Zhao X, Zhao X, Wei Y, Shang Q, Liu Z (2013) Isolation and identification of a novel antifungal protein from a rhizobacterium Bacillus subtilis Strain F3. J Phytopathol 161:43–48. doi:10.1111/jph.12015
Acknowledgments
This work was funded by the Outstanding Talents Program of the Ministry of Agriculture, and the National High Technology Research and Development Program (“863” Program) of China (2011AA10A205). We thank Dr. Li-Qun Zhang (China Agriculture University) for reviewing and giving valuable comments to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, X., Li, B., Wang, Y. et al. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97, 9525–9534 (2013). https://doi.org/10.1007/s00253-013-5198-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-013-5198-x


