Skip to main content

Advertisement

Log in

Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus atrophaeus CAB-1 displays a high inhibitory activity against various fungal pathogens and suppresses cucumber powdery mildew and tomato gray mold. We extracted and identified lipopeptides and secreted proteins and volatile compounds produced by strain CAB-1 to investigate the mechanisms involved in its biocontrol performance. In vitro assays indicated all three types of products contributed to the antagonistic activity against the fungal pathogen Botrytis cinerea. Each of these components also effectively prevented the occurrence of the cucumber powdery mildew caused by Sphaerotheca fuliginea under greenhouse conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry revealed that the major bioactive lipopeptide was fengycin A (C15–C17). We isolated the crude-secreted proteins of CAB-1 and purified a fraction with antifungal activity. This protein sequence shared a high identity with a putative phage-related pre-neck appendage protein, which has not been reported as an antifungal factor. The volatile compounds produced by CAB-1 were complex, including a range of alcohols, phenols, amines, and alkane amides. O-anisaldehyde represented one of the most abundant volatiles with the highest inhibition on the mycelial growth of B. cinerea. To our knowledge, this is the first report on profiling three types of antifungal substances in Bacilli and demonstrating their contributions to plant disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112:159–174. doi:10.1111/j.1365-2672.2011.05182.x

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Hamilton-Kemp TR, Hildebrand DF, McCracken C, Collins RW, Fleming PD (1994) Structure-antifungal activity relationships among volatile C-6 and C-9 aliphatic-aldehydes, ketones, and alcohols. J Agric Food Chem 42:1563–1568. doi:10.1021/jf00043a033

    Article  CAS  Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53:122–128. doi:10.1016/j.biocontrol.2009.11.010

    Article  CAS  Google Scholar 

  • Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Maerk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186. doi:10.1128/AEM.02069-07

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia B, Pandey A, Palni LM, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81. doi:10.1016/j.micres.2004.09.013

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513. doi:10.1016/j.micres.2008.08.007

    Article  PubMed  CAS  Google Scholar 

  • Dunlap CA, Schisler DA, Price NP, Vaughn SF (2011) Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. J Microbiol 49:603–609. doi:10.1007/s12275-011-1044-y

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Ryu C, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268. doi:10.1016/j.phytochem.2006.07.021

    Article  PubMed  CAS  Google Scholar 

  • Fernando W, Ramarathnam R, Krishnamoorthy A, Savchuk S (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964. doi:10.1016/j.soilbio.2004.10.021

    Article  CAS  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    Article  PubMed  CAS  Google Scholar 

  • Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272:91–98. doi:10.1111/j.1574-6968.2007.00743.x

    Article  PubMed  CAS  Google Scholar 

  • Huang CJ, Chen CY (2008) Synergistic interactions between chitinase ChicCW and fungicides against plant fungal pathogens. J Microbiol Biotech 18:784–787

    CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360. doi:10.1007/s00203-006-0199-0

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. doi:10.1007/s00253-008-1760-3

    Article  PubMed  CAS  Google Scholar 

  • Kavitha S, Senthilkumar S, Gnanamanickam S, Inayathullah M, Jayakumar R (2005) Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem 40:3236–3243. doi:10.1016/j.procbio.2005.03.060

    Article  CAS  Google Scholar 

  • Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52:613–619

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Q, Zhao LH, Zhang SM, Wang YX, Zhao XY (2009) Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J Zhejiang Univ Sci B 10:264–272. doi:10.1631/jzus.B0820341

    Article  PubMed  CAS  Google Scholar 

  • Li BQ, Lu XY, Guo QG, Qian CD, Li SZ, Ma P (2010a) Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1. Scientia Agricultura Sinica 43:3547–3554

    CAS  Google Scholar 

  • Li ZJ, Li BQ, Lu XY, Qian CD, Guo QG, Li SZ, Ma P (2010b) Research on the producing condition and stability of antifungal substance from biocontrol bacterium strain CAB-1. J Anhui Agric Sci 38(11):5700–5702,5777

    Google Scholar 

  • Liu WW, Zhao LJ, Wang C, Mu W, Liu F (2009) Bioactive evaluation and application of antifungal volatiles generated by five soil bacteria. Acta Phytophy Sinica 36:97–105

    CAS  Google Scholar 

  • Liu B, Huang LL, Buchenauer H, Kang ZS (2010) Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pestic Biochem Physiol 98:305–311. doi:10.1016/j.pestbp.2010.07.001

    Article  CAS  Google Scholar 

  • Magetdana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the Synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051. doi:10.1016/0300-9084(92)90002-V

    Article  CAS  Google Scholar 

  • Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899. doi:10.1007/s00203-012-0823-0

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi:10.1016/j.tim.2007.12.009

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38. doi:10.1007/s00253-005-1940-3

    Article  PubMed  CAS  Google Scholar 

  • Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 23:1716–1728. doi:10.1007/s13361-012-0437-4

    Article  PubMed  CAS  Google Scholar 

  • Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. doi:10.1016/j.copbio.2010.12.003

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  PubMed  CAS  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440. doi:10.1094/MPMI-20-4-0430

    Article  PubMed  CAS  Google Scholar 

  • Ryu C, Farag M, Hu C, Reddy M, Wei H, Pare P, Kloepper J (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932. doi:10.1073/pnas.0730845100

    Article  PubMed  CAS  Google Scholar 

  • Ryu C, Farag M, Hu C, Reddy M, Kloepper J, Pare P (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp. 103.026583

    Article  PubMed  CAS  Google Scholar 

  • Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch C 54c:859–866

    Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. doi:10.1039/b507392h

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Guo QG, Li BQ, Lu XY, Li SZ, Ma P (2013) Screening and identification of an antifungal chitinolvtic bacterium and its chitinase encoding gene cloning and prokaryotic expressiong. Acta Phytophy Sinica (in press)

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi:10.1111/j.1365-2958.2005.04587.x

    Article  PubMed  CAS  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin- a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901

    Article  PubMed  CAS  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang H (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biolo Control 46:552–559. doi:10.1016/j.biocontrol.2008.05.015

    Article  Google Scholar 

  • Wong JH, Hao J, Cao Z, Qiao M, Xu H, Bai Y, Ng TB (2008) An antifungal protein from Bacillus amyloliquefaciens. J Appl Microbiol 105:1888–1898. doi:10.1111/j.1365-2672.2008.03917.x

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Zhao X, Wei Y, Shang Q, Liu Z (2013) Isolation and identification of a novel antifungal protein from a rhizobacterium Bacillus subtilis Strain F3. J Phytopathol 161:43–48. doi:10.1111/jph.12015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Outstanding Talents Program of the Ministry of Agriculture, and the National High Technology Research and Development Program (“863” Program) of China (2011AA10A205). We thank Dr. Li-Qun Zhang (China Agriculture University) for reviewing and giving valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Li, B., Wang, Y. et al. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97, 9525–9534 (2013). https://doi.org/10.1007/s00253-013-5198-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5198-x

Keywords