Application of micro-segmented flow for two-dimensional characterization of the combinatorial effect of zinc and copper ions on metal-tolerant Streptomyces strains

Abstract

The cultivation and growth behavior of metal-tolerant strains of Streptomyce acidiscabies E13 and Streptomyces sp. F4 were studied under droplet-based microfluidics conditions. It was shown that the technique of micro segmented flow is well suited for the investigation of dependence of bacterial growth on different concentrations of either single metal ions or combinations of them. This study confirms higher tolerance to Zn than to Cu by our test organism. The highly resolved dose–response curves reflect two transitions between the different growth behaviors, separating initial responses to Cu concentration ranges into those with (a) intense growth, (b) moderate growth, and (c) growth inhibition. For Streptomyces sp. F4, an initial stimulation was shown in the sublethal range of zinc sulfate. Two-dimensional screenings using computer-controlled fluid actuation and in situ micro flow-through fluorimetry reflected a strong growth stimulation of strain F4 by zinc sulfate in the presence of sublethal Cu concentrations. This stimulatory effect on binary mixtures may be useful in providing optimal growth conditions in bioremediation procedures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Admiraal W, Blanck H, Buckert-De Jong M, Guasch H, Ivorra N, Lehmann V, Nystrom BAH, Paulsson M, Sabater S (1999) Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res 33:1989–1996

    Article  CAS  Google Scholar 

  2. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microb 40:295–301

    Article  CAS  Google Scholar 

  3. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab Chip 8:519–526

    Article  CAS  PubMed  Google Scholar 

  4. Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  CAS  PubMed  Google Scholar 

  5. Cao JL, Kursten D, Schneider S, Knauer A, Gunther PM, Kohler JM (2012) Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles. Lab Chip 12:474–484

    Article  CAS  PubMed  Google Scholar 

  6. Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel DB, Garstecki P (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12:1629–1637

    Article  CAS  PubMed  Google Scholar 

  7. Clausell-Tormos J, Merten CA (2012) Micro segmented-flow in biochemical and cell-based assays. Front Biosci 4:1768–1779 (Elite Ed)

    Google Scholar 

  8. Costa JSD, Kothe E, Abate CM, Amoroso MJ (2012) Unraveling the Amycolatopsis tucumanensis copper-resistome. Biometals 25:905–917

    Article  Google Scholar 

  9. Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): The effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21:2412–2422

    CAS  PubMed  Google Scholar 

  10. Funfak A, Brosing A, Brand M, Kohler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7:1132–1138

    Article  CAS  PubMed  Google Scholar 

  11. Funfak A, Hartung R, Cao JL, Martin K, Wiesmuller KH, Wolfbeis OS, Kohler JM (2009) Highly resolved dose–response functions for drug-modulated bacteria cultivation obtained by fluorometric and photometric flow-through sensing in microsegmented flow. Sensor Actuat B-Chem 142:66–72

    Article  CAS  Google Scholar 

  12. Funfak A, Cao JL, Knauer A, Martin K, Kohler JM (2011) Synergistic effects of metal nanoparticles and a phenolic uncoupler using microdroplet-based two-dimensional approach. J Environ Monitor 13:410–415

    Article  CAS  Google Scholar 

  13. Gherbal R, Hamed H, Foth H (2011) The effect of zinc ions on expression of metallothionein and poly (ADP-ribose) polymerase-1 in human lung cells. Toxicol Lett 205:S160

    Article  Google Scholar 

  14. Gunther PM, Schneider S, Groß GA, Kohler JM (2011) Addressing of multidimensional concentration spaces by micro segmented flow technique. Proc Mikrosyst Technol CongrDarmst 10:945–947

    Google Scholar 

  15. Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biot 87:1271–1280

    Article  CAS  Google Scholar 

  16. Ince NH, Dirilgen N, Apikyan IG, Tezcanli G, Ustun B (1999) Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Arch Environ Con Tox 36:365–372

    Article  CAS  Google Scholar 

  17. Kalantari N, Ghaffari S (2008) Evaluation of toxicity of heavy metals for Escherichia coli growth. Iran J Environ Health 5:173–178

    CAS  Google Scholar 

  18. Kohler JM, Henkel T, Grodrian A, Kirner T, Roth M, Martin K, Metze J (2004) Digital reaction technology by micro segmented flow—components, concepts and applications. Chem Eng J 101:201–216

    Article  CAS  Google Scholar 

  19. Kuersten D, Cao J, Funfak A, Mueller P, Köhler JM (2011) Cultivation of Chlorella vulgaris in microfluid segments and microtoxicological determination of their sensitivity against CuCl2 in the nanoliter range. Eng Life Sci 11:1–8

    Article  Google Scholar 

  20. Le TTY, Vijver MG, Hendriks AJ, Peijnenburg WJGM (2013) Modeling toxicity of binary metal mixtures (Cu2+–Ag+, Cu2+–Zn2+) to lettuce, Lactuca sativa, with the biotic ligand model. Environ Toxicol Chem 32:137–143

    Article  Google Scholar 

  21. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  22. Martin K, Henkel T, Baier V, Grodrian A, Schon T, Roth M, Kohler JM, Metze J (2003) Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 3:202–207

    Article  CAS  PubMed  Google Scholar 

  23. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  24. Nies AT, Damme K, Schaeffeler E, Schwab M (2012) Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs. Expert Opin Drug Met 8:1565–1577

    Article  CAS  Google Scholar 

  25. Rademacher C, Masepohl B (2012) Copper-responsive gene regulation in bacteria. Microbiol-Uk 158:2451–2464

    Article  CAS  Google Scholar 

  26. Sani RK, Peyton BM, Brown LT (2001) Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl Environ Microb 67:4765–4772

    Article  CAS  Google Scholar 

  27. Schmidt A, Haferburg G, Sineriz M, Merten D, Buchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde-Geochem 65:131–144

    Article  CAS  Google Scholar 

  28. Schmidt A, Schmidt A, Haferburg G, Kothe E (2007) Superoxide dismutases of heavy metal resistant streptomycetes. J Basic Microb 47:56–62

    Article  CAS  Google Scholar 

  29. Schmidt A, Haferburg G, Schmidt A, Lischke U, Merten D, Ghergel F, Buchel G, Kothe E (2009) Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chem Erde-Geochem 69:35–44

    Article  CAS  Google Scholar 

  30. Schmidt A, Rzanny M, Schmidt A, Hagen M, Schutze E, Kothe E (2012) GC content-independent amino acid patterns in Bacteria and Archaea. J Basic Microb 52:195–205

    Article  CAS  Google Scholar 

  31. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Edit 49:5846–5868

    Article  CAS  Google Scholar 

  32. Utgikar VP, Tabak HH, Haines JR, Govind R (2003) Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria. Biotechnol Bioeng 82:306–312

    Article  CAS  PubMed  Google Scholar 

  33. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  34. Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76:4977–4982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of the German Federal Ministry of Education and Research (BMBF) in the frame of the project “BactoCat” (Kz: 031A161A) is gratefully acknowledged. J. Cao is financially supported by the German Federal Environmental Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jialan Cao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, J., Kürsten, D., Krause, K. et al. Application of micro-segmented flow for two-dimensional characterization of the combinatorial effect of zinc and copper ions on metal-tolerant Streptomyces strains. Appl Microbiol Biotechnol 97, 8923–8930 (2013). https://doi.org/10.1007/s00253-013-5147-8

Download citation

Keywords

  • Droplet-based microfluidics
  • Segmented flow
  • Streptomyces
  • Heavy metal resistance
  • Combinatorial effects
  • Bioremediation