Skip to main content
Log in

Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe K, Gomi K, Hasegawa F, Machida M (2006) Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162:143–153

    Article  PubMed  CAS  Google Scholar 

  • Aleksenko A, Clutterbuck AJ (1997) Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21:373–387

    Article  PubMed  CAS  Google Scholar 

  • Aleksenko A, Ivanova L (1998) In vivo linearization and autonomous replication of plasmids containing human telomeric DNA in Aspergillus nidulans. Mol Gen Genet 260:159–164

    Article  PubMed  CAS  Google Scholar 

  • Aleksenko A, Nikolaev I, Vinetski Y, Clutterbuck AJ (1996) Gene expression from replicating plasmids in Aspergillus nidulans. Mol Gen Genet 253:242–246

    Article  PubMed  CAS  Google Scholar 

  • Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J (2008a) A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Nat Acad Sci USA 105:4387–4392

    Article  PubMed  CAS  Google Scholar 

  • Andersen MR, Nielsen ML, Nielsen J (2008b) Metabolic model integration of the bibliome, genome, metabolome, and reactome of Aspergillus niger. Mol Syst Biol 4:178

    Article  PubMed  Google Scholar 

  • Andersen MR, Kildegaard KR, Hofmann G, Nielsen J (2009) Metabolic engineering of filamentous fungi. In: Smolke C (ed) Metabolic pathway engineering handbook, 1st edn. CRC, Boca Raton, pp 1–30

    Google Scholar 

  • Battat E, Peleg Y, Bercovitz A, Rokem JS, Goldberg I (1991) Optimization of l-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng 37:1108–1116

    Article  PubMed  CAS  Google Scholar 

  • Begum MF, Alimon AR (2011) Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC4857.01 for fermentable sugar production. Elect J Biotechnol 14:1–9

    Google Scholar 

  • Bercovitz A, Peleg Y, Battat E, Rokem JS, Goldberg I (1990) Localisation of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl Environ Microbiol 56:1594–1597

    PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Christensen T, Wøldike H, Boel E, Mortensen SB, Hjortshøj K, Thim L, Hansen MT (1988) High level expression of recombinant genes in Aspergillus oryzae. Biotechnol 6:1419–1422

    Article  CAS  Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56

    Article  PubMed  CAS  Google Scholar 

  • de Jongh WA, Nielsen J (2008) Enhanced citric acid production through gene insertion in Aspergillus niger. Metab Eng 10:87–96

    Article  PubMed  Google Scholar 

  • Duarte JC, Costa-Ferreira M (1994) Aspergilli and lignocellulosics: enzymology and biotechnological applications. FEMS Microbiol Rev 13:377–386

    Article  PubMed  CAS  Google Scholar 

  • Fowler T, Rey MW, Vaha-Vahe P, Power SD, Berka RM (1993) The catR gene encoding a catalase from Aspergillus niger: primary structure and elevated expression through increased gene copy number and use of a strong promoter. Mol Microbiol 9:989–998

    Article  PubMed  CAS  Google Scholar 

  • Goldberg I, Rokem JS, Pines O (2006) Organic acids: old metabolites, new themes. J Chem Technol Biotechnol 81:1601–1611

    Article  CAS  Google Scholar 

  • Grobler J, Bauer F, Subden RE, Hendrik J, Van Vuuren V (2005) The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11:1485–1491

    Article  Google Scholar 

  • Hjort CM (2006) Production of food additives using filamentous fungi. In: Heller KJ (ed) Genetically engineered food, 2nd edn. Wiley-VCH, Weinheim, pp 95–108

    Chapter  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  Google Scholar 

  • Hynes MJ (1996) Genetic transformation of filamentous fungi. J Genet 75:297–311

    Article  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    PubMed  CAS  Google Scholar 

  • Kato M, Sekine K, Tsukagoshi N (1996) Sequence-specific binding sites in the Taka-amylase A G2 promoter for the CreA repressor mediating carbon catabolite repression. Biosci Biotechnol Biochem 60:1776–1779

    Article  PubMed  CAS  Google Scholar 

  • Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479

    PubMed  CAS  Google Scholar 

  • Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Rao Juvvadi P, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J-I, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal bio/technology for industry, agriculture, and medicine. Kluwer/Plenum, New York, pp 307–340

    Chapter  Google Scholar 

  • Meijer S, Nielsen ML, Olsson L, Nielsen J (2009) Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger. J Ind Microbiol Biotechnol 36:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45:878–889

    Article  PubMed  CAS  Google Scholar 

  • Moon SY, Hong SH, Kim TY, Lee SY (2008) Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 40:312–320

    Article  CAS  Google Scholar 

  • Nexant (2009) Maleic anhydride. Nexant, Inc., White Plains. Available at http://www.chemsystems.com/reports/search/docs/abstracts/0708_8_abs.pdf

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  PubMed  CAS  Google Scholar 

  • Osmani SA, Scrutton MC (1983) The subcellular localisation of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur J Biochem 133:551–560

    Article  PubMed  CAS  Google Scholar 

  • Peleg Y, Stieglitz B, Goldberg I (1988) Malic acid accumulation by Aspergillus flavus. I. Biochemical aspects of acid biosynthesis. Appl Microbiol Biotechnol 28:69–75

    Article  CAS  Google Scholar 

  • Peleg Y, Battat E, Scrutton MC, Goldberg I (1989) Isoenzyme pattern and sub-cellular localisation of enzymes involved in fumaric acid accumulation by Rhizopus oryzae. Appl Microbiol Biotechnol 32:334–339

    Article  CAS  Google Scholar 

  • Prathumpai W, Gabelgaard JB, Wanchanthuek P, van de Vondervoort PJI, de Groot MJL, McIntyre M, Nielsen J (2003) Metabolic control analysis of xylose catabolism in Aspergillus. Biotechnol Prog 19:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Roa Engel CA, Straathof AJ, Zijlmans TW, van Gulik WM, van der Wielen LA (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  PubMed  CAS  Google Scholar 

  • Schmid J, Stahl U, Meyer V (2009) Genetic and metabolic engineering in filamentous fungi. In: Anke T, Weber D (eds) The Mycota XV, physiology and genetics, 1st edn. Springer, Berlin, pp 377–392

    Chapter  Google Scholar 

  • Skory CD (2004) Repair of plasmid DNA used for transformation of Rhizopus oryzae by gene conversion. Curr Genet 45:302–310

    Article  PubMed  CAS  Google Scholar 

  • Skory CD (2005) Inhibition of non-homologous end joining and integration of DNA upon transformation of Rhizopus oryzae. Mol Genet Genomics 274:373–383

    Article  PubMed  CAS  Google Scholar 

  • Skory CD, Ibrahim AS (2007) Native and modified lactate dehydrogenase expression in a fumaric acid producing isolate Rhizopus oryzae 99-880. Curr Genet 52:23–33

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Tada S, Gomi K, Kitamoto K, Kumagai C, Tamura G (1992) Deletion analysis of the Taka-amylase A gene promoter using a homologous transformation system in Aspergillus oryzae. Biosci Biotechnol Biochem 56:1849–1853

    Article  PubMed  CAS  Google Scholar 

  • Verdoes JC, Punt PJ, Schrickx JM, van Verseveld HW, Stouthamer AH, van den Hondel CAMJJ (1993) Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene. Transgenic Res 2:84–92

    Article  PubMed  CAS  Google Scholar 

  • Vongsangnak W, Olsen P, Hansen K, Krogsgaard S, Nielsen J (2008) Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics 9:245–258

    Article  PubMed  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy, Washington

    Google Scholar 

  • Zelle R, de Hulster ME, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JA, van Dijken JP, Pronk JT, van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) l-Malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:427–434

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, S.H., Bashkirova, L., Berka, R. et al. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 97, 8903–8912 (2013). https://doi.org/10.1007/s00253-013-5132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5132-2

Keywords

Navigation