Skip to main content
Log in

Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ability of industrially relevant species of thermophilic lactobacilli strains to hydrolyze proteins from animal (caseins and β-lactoglobulin) and vegetable (soybean and wheat) sources, as well as influence of peptide content of growth medium on cell envelope-associated proteinase (CEP) activity, was evaluated. Lactobacillus delbrueckii subsp. lactis (CRL 581 and 654), L. delbrueckii subsp. bulgaricus (CRL 454 and 656), Lactobacillus acidophilus (CRL 636 and 1063), and Lactobacillus helveticus (CRL 1062 and 1177) were grown in a chemically defined medium supplemented or not with 1 % Casitone. All strains hydrolyzed mainly β-casein, while degradation of αs-caseins was strain dependent. Contrariwise, κ-Casein was poorly degraded by the studied lactobacilli. β-Lactoglobulin was mainly hydrolyzed by CRL 656, CRL 636, and CRL 1062 strains. The L. delbrueckii subsp. lactis strains, L. delbrueckii subsp. bulgaricus CRL 656, and L. helveticus CRL 1177 degraded gliadins in high extent, while the L. acidophilus and L. helveticus strains highly hydrolyzed soy proteins. Proteinase production was inhibited by Casitone, the most affected being the L. delbrueckii subsp. lactis species. This study highlights the importance of proteolytic diversity of lactobacilli for rational strain selection when formulating hydrolyzed dairy or vegetable food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre L, Garro MS, Savoy de Giori G (2008) Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chem 111:976–982

    Article  CAS  Google Scholar 

  • Banina A, Vukasinovic M, Brankovic S, Fira D, Kojic M, Topisirovic L (1998) Characterization of natural isolate Lactobacillus acidophilus BGRA43 useful for acidophilus milk production. J Appl Microbiol 84:593–599

    Article  PubMed  CAS  Google Scholar 

  • Bruinenberg PG, Limsowtin GKY (1995) Diversity of proteolytic enzymes among lactococci. Aust J Dairy Technol 50:47–50

    CAS  Google Scholar 

  • Champagne CP, Green-Johnson J, Raymond Y, Barrette J, Buckley N (2009) Selection of probiotic bacteria for the fermentation of a soy beverage in combination with Streptococcus thermophilus. Food Res Int 42:612–621

    Article  CAS  Google Scholar 

  • Di Cagno R, De Angelis M, Gallo G, Settanni L, Berloco MG, Siragusa S, Parente E, Corsetti A, Gobbetti M (2007) Genotypic and phenotypic diversity of Lactobacillus rossiae strains isolated from sourdough. J Appl Microbiol 103:821–835

    Article  PubMed  Google Scholar 

  • El-Ghaish S, Dalgalarrondo M, Choiset Y, Sitohy M, Ivanova I, Haertlé T, Chobert J (2010) Screening of strains of lactococci isolated from Egyptian dairy products for their proteolytic activity. Food Chem 120:758–764

    Article  CAS  Google Scholar 

  • Espeche Turbay MB, Savoy de Giori G, Hebert EM (2009) Release of the cell-envelope-associated proteinase of Lactobacillus delbrueckii subspecies lactis CRL 581 is dependent upon pH and temperature. J Agr Food Chem 57:8607–8611

    Article  CAS  Google Scholar 

  • Exterkate FA (1990) Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl Microbiol Biotechnol 33:401–406

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Espla MD, Garault P, Monnet V, Rul F (2000) Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization. Appl Environ Microbiol 66:4772–4778

    Article  PubMed  CAS  Google Scholar 

  • Fira D, Kojic M, Banina A, Spasojevic I, Strahinic I, Topisirovic L (2001) Characterization of cell envelope-associated proteinases of thermophilic lactobacilli. J Appl Microbiol 90:123–130

    Article  PubMed  CAS  Google Scholar 

  • Galle S, Schwab C, Arendt EK, Gänzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 28:547–553

    Article  PubMed  CAS  Google Scholar 

  • Genay M, Sadat L, Gagnaire V, Lortal S (2009) prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl Environ Microbiol 75:3238–3249

    Article  PubMed  CAS  Google Scholar 

  • Gerez CL, Dallagnol A, Rollan G, Font de Valdez G (2012) A combination of two lactic acid bacteria improves the hydrolysis of gliadin during wheat dough fermentation. Food Microbiol 32:427–430

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Atlan D, Blanc B, Portalier R, Germond JE, Lapierre L, Mollet B (1996) A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. J Bacteriol 178:3059–3065

    PubMed  CAS  Google Scholar 

  • HadjiSfaxi I, El-Ghaish S, Ahmadova A, Rabesona H, Haertle T, Chobert J (2012) Characterization of new strain Lactobacillus paracasei I-N-10 with proteolytic activity: potential role in decrease in β-casein immuno-reactivity. Eur Food Res Technol 235:447–455

    Article  CAS  Google Scholar 

  • Hebert EM, Raya RR, De Giori GS (2000a) Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. Appl Environ Microbiol 66:5316–5321

    Article  PubMed  CAS  Google Scholar 

  • Hebert EM, Raya RR, Tailliez P, Savoy de Giori G (2000b) Characterization of natural isolates of Lactobacillus strains to be used as starter cultures in dairy fermentation. Int J Food Microbiol 59:19–27

    Article  PubMed  CAS  Google Scholar 

  • Hebert EM, Raya RR, de Giori GS (2002) Modulation of the cell-surface proteinase activity of thermophilic lactobacilli by the peptide supply. Curr Microbiol 45:385–389

    Article  PubMed  CAS  Google Scholar 

  • Hebert EM, Raya RR, de Giori GS (2004) Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Curr Microbiol 49:341–345

    Article  PubMed  CAS  Google Scholar 

  • Hebert EM, Mamone G, Picariello G, Raya RR, Savoy G, Ferranti P, Addeo F (2008) Characterization of the pattern of αs1- and β-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Appl Environ Microbiol 74:3682–3689

    Article  PubMed  CAS  Google Scholar 

  • Hebert EM, Saavedra L, Ferranti P (2010) Bioactive peptides derived from casein and whey proteins. In: Mozzi F, Raya R, Vignolo G (eds) Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell, Ames, pp 233–249

    Chapter  Google Scholar 

  • Holck A, Naes H (1992) Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO151. J Gen Microbiol 138:1353–1364

    Article  PubMed  CAS  Google Scholar 

  • Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E (2005) Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 29:393–409

    Article  PubMed  CAS  Google Scholar 

  • Kok J, Leenhouts KJ, Haandrikman AJ, Ledeboer AM, Venema G (1988) Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Appl Environ Microbiol 54:231–238

    PubMed  CAS  Google Scholar 

  • Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC genomics 11:36–51

    Article  PubMed  Google Scholar 

  • Martín-Hernández MC, Alting AC, Exterkate FA (1994) Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Appl Microbiol Biotechnol 40:828–834

    Article  Google Scholar 

  • Meisel H (2004) Multifunctional peptides encrypted in milk proteins. Biofactors 21:55–61

    Article  PubMed  CAS  Google Scholar 

  • Miladinov N, Kuipers OP, Topisirovic L (2001) Casitone-mediated expression of the prtP and prtM genes in Lactococcus lactis subsp. lactis BGIS29. Arch Microbiol 177:54–61

    Article  PubMed  CAS  Google Scholar 

  • Pastar I, Tonic I, Golic N, Kojic M, van Kranenburg R, Kleerebezem M, Topisirovic L, Jovanovic G (2003) Identification and genetic characterization of a novel proteinase, PrtR, from the human isolate Lactobacillus rhamnosus BGT10. Appl Environ Microbiol 69:5802–11

    Article  PubMed  CAS  Google Scholar 

  • Pederson JA, Mileski GJ, Weimer BC, Steele JL (1999) Genetic characterization of a cell envelope-associated proteinase from Lactobacillus helveticus CNRZ32. J Bacteriol 181:4592–7

    PubMed  CAS  Google Scholar 

  • Pescuma M, Hebert EM, Mozzi F, Font de Valdez G (2007) Hydrolysis of whey proteins by Lactobacillus acidophilus. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus grown in a chemically defined medium. J Appl Microbiol 103:1738–1746

    Article  PubMed  CAS  Google Scholar 

  • Pescuma M, Hebert EM, Mozzi F, Font de Valdez G (2008) Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content. Food Microbiol 25:442–451

    Article  PubMed  CAS  Google Scholar 

  • Pescuma M, Hebert EM, Mozzi F, Font de Valdez G (2010) Functional fermented whey-based beverage using lactic acid bacteria. Int J Food Microbiol 141:73–81

    Article  PubMed  CAS  Google Scholar 

  • Pescuma M, Hebert EM, Bru E, Font de Valdez G, Mozzi F (2012) Diversity in growth and protein degradation by dairy relevant lactic acid bacteria species in reconstituted whey. J Dairy Res 79:201–208

    Article  PubMed  CAS  Google Scholar 

  • Pescuma M, Hebert EM, Rabesona H, Drouet M, Choiset Y, Haertlé T, Mozzi F, Font de Valdez G, Chobert J-M (2011) Proteolytic action of Lactobacillus delbrueckii subsp. bulgaricus CRL 656 reduces antigenic response to bovine β-lactoglobulin. Food Chem 127:487–492

    Article  PubMed  CAS  Google Scholar 

  • Picariello G, Mamone G, Addeo F, Ferranti P (2011) The frontiers of mass spectrometry-based techniques in food allergenomics. J Cromatogr A 1218:7386–7398

    Article  CAS  Google Scholar 

  • Sadat-Mekmene L, Genay M, Atlan D, Lortal S, Gagnaire V (2011) Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int J Food Microbiol 146:1–13

    Article  PubMed  CAS  Google Scholar 

  • Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  PubMed  CAS  Google Scholar 

  • Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation I. J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  • Smeianov VV, Wechter P, Broadbent JR, Hughes JE, Rodriguez BT, Christensen TK, Ardo Y, Steele JL (2007) Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl Environ Microbiol 73:2661–2672

    Article  PubMed  CAS  Google Scholar 

  • Stefanitsi D, Sakellaris G, Garel J-R (1995) The presence of two proteinases associated with the cell wall of Lactobacillus bulgaricus. FEMS Microbiol Lett 128:53–58

    Article  CAS  Google Scholar 

  • Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast and cereal enzymes to the generation of amino acids in dough relevant for bread flavour. Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  • Tsakalidou E, Anastasiou R, Vandenberghe I, Van Beeumen J, Kalantzopoulos G (1999) Cell-wall-bound proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: characterization and specificity for β-casein. Appl Environ Microbiol 65:2035–2040

    PubMed  CAS  Google Scholar 

  • Visser S, Exterkate FA, Slangen CJ, De Veer GJCM (1986) Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine αs1-, β-, and κ-casein. Appl Environ Microbiol 86:1162–1166

    Google Scholar 

  • Wang W, Gonzalez de Mejia E (2005) A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr Rev Food Sci Food Saf 4:63–78

    Article  CAS  Google Scholar 

  • Zotta T, Piraino P, Ricciardi A, McSweeney PL, Parente E (2006) Proteolysis in model sourdough fermentations. J Agr Food Chem 54:2567–2574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CONICET, ANPCyT, FONARSEC, and CIUNT from Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira María Hebert.

Additional information

Micaela Pescuma and María Beatriz Espeche Turbay contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pescuma, M., Espeche Turbay, M.B., Mozzi, F. et al. Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins. Appl Microbiol Biotechnol 97, 7831–7844 (2013). https://doi.org/10.1007/s00253-013-5037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5037-0

Keywords

Navigation