Skip to main content

Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger

Abstract

Autophagy is a well-conserved catabolic process constitutively active in eukaryotes that is involved in maintaining cellular homeostasis by the targeting of cytoplasmic content and organelles to vacuoles. Autophagy is strongly induced by the limitation of nutrients including carbon, nitrogen, and oxygen and is clearly associated with cell death. It has been demonstrated that the accumulation of empty hyphal compartments and cryptic growth in carbon-starved submerged cultures of the filamentous fungus Aspergillus niger is accompanied by a joint transcriptional induction of autophagy genes. This study examines the role of autophagy by deleting the atg1, atg8, and atg17 orthologs in A. niger and phenotypically analyzing the deletion mutants in surface and submerged cultures. The results indicate that atg1 and atg8 are essential for efficient autophagy, whereas deletion of atg17 has little to no effect on autophagy in A. niger. Depending on the kind of oxidative stress confronted with, autophagy deficiency renders A. niger either more resistant (menadione) or more sensitive (H2O2) to oxidative stress. Fluorescence microscopy showed that mitochondrial turnover upon carbon depletion in submerged cultures is severely blocked in autophagy-impaired A. niger mutants. Furthermore, automated image analysis demonstrated that autophagy promotes survival in maintained carbon-starved cultures of A. niger. Taken together, the results suggest that besides its function in nutrient recycling, autophagy plays important roles in physiological adaptation by organelle turnover and protection against cell death upon carbon depletion in submerged cultures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abràmoff MD, Hospitals I, Magalhães PJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Alic M, Bennett JW, Lasure LL (1991) More gene manipulations in fungi. Academic, San Diego

    Google Scholar 

  • Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJI, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PWM, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, van den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, van Peij NNME, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897. doi:10.1101/gr.112169.110

    PubMed  Article  CAS  Google Scholar 

  • Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483

    PubMed  Article  CAS  Google Scholar 

  • Arnaud M, Chibucos MC, Costanzo MC, Crabtree J, Inglis DO, Lotia A, Orvis J, Shah P, Skrzypek MS, Binkley G, Miyasato SR, Wortman JR, Sherlock G (2010) The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res 38:D420–D427. doi:10.1093/nar/gkp751

    PubMed  Article  CAS  Google Scholar 

  • Arnaud M, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR (2012) The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40:D653–D659. doi:10.1093/nar/gkr875

    PubMed  Article  CAS  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302

    PubMed  Article  CAS  Google Scholar 

  • Bartoszewska M, Kiel JAKW (2011) The role of macroautophagy in development of filamentous fungi. Antioxid Redox Signaling 14:2271–2287. doi:10.1089/ars.2010.3528

    Article  CAS  Google Scholar 

  • Bartoszewska M, Kiel JAKW, Bovenberg RAL, Veenhuis M, van der Klei IJ (2011) Autophagy deficiency promotes β-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77:1413–1422. doi:10.1128/AEM.01531-10

    PubMed  Article  CAS  Google Scholar 

  • Bos C, Debets A, Swart K, Huybers A (1988) Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14:437–443

    PubMed  Article  CAS  Google Scholar 

  • Braaksma M, Smilde AK, van der Werf MJ, Punt PJ (2009) The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger. Microbiology 155:3430–3439. doi:10.1099/mic.0.031062-0

    PubMed  Article  CAS  Google Scholar 

  • Carvalho N, Arentshorst M (2011) Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger. Appl Microbiol Biotechnol 89:357–373. doi:10.1007/s00253-010-2916-5

    PubMed  Article  CAS  Google Scholar 

  • Carvalho N, Jørgensen TR, Arentshorst M, Nitsche BM, van den Hondel CAMJJ, Archer DB, Ram AFJ (2012) Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress. BMC Genomics 13:350. doi:10.1186/1471-2164-13-350

    PubMed  Article  CAS  Google Scholar 

  • Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, Klionsky DJ (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16:3438–3453. doi:10.1091/mbc.E04

    PubMed  Article  CAS  Google Scholar 

  • Cheong H, Nair U, Geng J, Klionsky DJ (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19:668–681. doi:10.1091/mbc.E07

    PubMed  Article  CAS  Google Scholar 

  • Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12:1509–1518. doi:10.1038/sj.cdd.4401751

    PubMed  Article  CAS  Google Scholar 

  • Emri T, Molnár Z, Pusztahelyi T, Pócsi I (2004) Physiological and morphological changes in autolyzing Aspergillus nidulans cultures. Folia Microbiol 49:277–284

    Article  CAS  Google Scholar 

  • Emri T, Molnár Z, Pusztahelyi T, Varecza Z, Pócsi I (2005) The FluG-BrlA pathway contributes to the initialisation of autolysis in submerged Aspergillus nidulans cultures. Mycol Res 109:757–763

    PubMed  Article  CAS  Google Scholar 

  • Emri T, Molnár Z, Veres T, Tünde P, Dudas G, Pócsi I (2006) Glucose-mediated repression of autolysis and conidiogenesis in Emericella nidulans. Mycol Res 110:1172–1178. doi:10.1016/j.mycres.2006.07.006

    PubMed  Article  CAS  Google Scholar 

  • Fernandes P, Mannarino S, Silva C, Pereira M, Panek A, Eleutherio E (2007) Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox Rep 12:236–244. doi:10.1179/135100007X200344

    PubMed  Article  CAS  Google Scholar 

  • Inoue Y, Klionsky DJ (2010) Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21:664–670. doi:10.1016/j.semcdb.2010.03.009

    PubMed  Article  CAS  Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681

    PubMed  CAS  Google Scholar 

  • Jørgensen TR, Nitsche BM, Lamers GEM, Arentshorst M, van den Hondel CAMJJ, Ram AFJ (2010) Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol 76:5344–5355. doi:10.1128/AEM.00450-10

    PubMed  Article  Google Scholar 

  • Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16:2544–2553. doi:10.1091/mbc.E04

    PubMed  Article  CAS  Google Scholar 

  • Kanki T, Klionsky DJ, Okamoto K (2011) Mitochondria autophagy in yeast. Antioxid Redox Signaling 14:1989–2001. doi:10.1089/ars.2010.3762

    Article  CAS  Google Scholar 

  • Kikuma T, Kitamoto K (2011) Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes. FEMS Microbiol Lett 316:61–69. doi:10.1111/j.1574-6968.2010.02192.x

    PubMed  Article  CAS  Google Scholar 

  • Kikuma T, Ohneda M, Arioka M, Kitamoto K (2006) Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot Cell 5:1328–1336. doi:10.1128/EC.00024-06

    PubMed  Article  CAS  Google Scholar 

  • Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant–Microbe Interact 15:172–179. doi:10.1094/MPMI.2002.15.2.172

    PubMed  Article  CAS  Google Scholar 

  • MacKenzie DA, Guillemette T, Al-Sheikh H, Watson AJ, Jeenes DJ, Wongwathanarat P, Dunn-Coleman NS, van Peij NNME, Archer DB (2005) UPR-independent dithiothreitol stress-induced genes in Aspergillus niger. Mol Genet Genomics 274:410–418. doi:10.1007/s00438-005-0034-3

    PubMed  Article  CAS  Google Scholar 

  • Matsuura A, Tsukada M, Wada Y, Ohsumi Y (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192:245–250

    PubMed  Article  CAS  Google Scholar 

  • Mattern IE, Punt PJ, van den Hondel CAMJJ (1988) A vector of Aspergillus transformation conferring phleomycin resistance. Fungal Genet Newsl 35:25–30

    Google Scholar 

  • Mattern IE, van Noort JM, van den Berg P, Archer DB, Roberts IN, van den Hondel CAMJJ (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234:332–336

    PubMed  Article  CAS  Google Scholar 

  • McIntyre M, Berry DR, McNeil B (2000) Role of proteases in autolysis of Penicillium chrysogenum chemostat cultures in response to nutrient depletion. Appl Microbiol Biotechnol 53:235–242

    PubMed  Article  CAS  Google Scholar 

  • McNeil B, Berry DR, Harvey LM, Grant A, White S (1998) Measurement of autolysis in submerged batch cultures of Penicillium chrysogenum. Biotechnol Bioeng 57:297–305

    PubMed  Article  CAS  Google Scholar 

  • Meyer V, Ram AFJ, Punt PJ (2010) Genetics, genetic manipulation and approaches to strain improvement of filamentous fungi. In: Davies J, Demain A (eds) Manual of industrial microbiology and biotechnology. Wiley, New York, pp 318–329

    Google Scholar 

  • Nadal M, Gold SE (2010) The autophagy genes atg8 and atg1 affect morphogenesis and pathogenicity in Ustilago maydis. Mol Plant Pathol 11:463–478. doi:10.1111/J.1364-3703.2010.00620.X

    PubMed  Article  CAS  Google Scholar 

  • Nitsche BM, Jørgensen TR, Akeroyd M, Meyer V, Ram AFJ (2012) The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genomics 13:380. doi:10.1186/1471-2164-13-380

    PubMed  Article  CAS  Google Scholar 

  • Peberdy JF (1994) Protein secretion in filamentous fungi—trying to understand a highly productive black box. Trends Biotechnol 12:50–57

    PubMed  Article  CAS  Google Scholar 

  • Pel HJ, De Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, De Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg MA, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, D’Enfert C, Geysens S, Goosen C, Groot GS, De Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CAMJJ, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, vanKuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJI, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    PubMed  Article  Google Scholar 

  • Pinan-Lucarré B, Balguerie A, Clavé C (2005) Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell 4:1765–1774. doi:10.1128/EC.4.11.1765

    PubMed  Article  Google Scholar 

  • Pócsi I, Miskei M, Karányi Z, Emri T, Ayoubi P, Pusztahelyi T, Balla G, Prade RA (2005) Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures-linking genome-wide transcriptional changes to cellular physiology. BMC Genomics 6:182. doi:10.1186/1471-2164-6-182

    PubMed  Article  Google Scholar 

  • Pollack JK, Li ZJ, Marten MR (2008) Fungal mycelia show lag time before re-growth on endogenous carbon. Biotechnol Bioeng 100:458–465. doi:10.1002/bit.21779

    PubMed  Article  CAS  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    PubMed  Article  CAS  Google Scholar 

  • Richie DL, Fuller KK, Fortwendel J, Miley MD (2007) Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot Cell 6:2437–2447. doi:10.1128/EC.00224-07

    PubMed  Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, Cold Spring Harbor

    Google Scholar 

  • Shoji J-Y, Craven KD (2011) Autophagy in basal hyphal compartments: a green strategy of great recyclers. Fungal Biol Rev 25:79–83. doi:10.1016/j.fbr.2011.04.001

    Article  Google Scholar 

  • Shoji J-Y, Arioka M, Kitamoto K (2006) Possible involvement of pleiomorphic vacuolar networks in nutrient recycling in filamentous fungi. Autophagy 2:226–227

    PubMed  CAS  Google Scholar 

  • Suelmann R, Fischer R (2000) Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motil Cytoskeleton 45:42–50. doi:10.1002/(SICI)1097-0169(200001)45:1<42::AID-CM4>3.0.CO;2-C

    PubMed  Article  CAS  Google Scholar 

  • Suzuki SW, Onodera J, Ohsumi Y (2011) Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS One 6:e17412. doi:10.1371/journal.pone.0017412

    PubMed  Article  CAS  Google Scholar 

  • Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci U S A 101:6564–6569. doi:10.1073/pnas.0305888101

    PubMed  Article  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    PubMed  Article  CAS  Google Scholar 

  • Tucker CL, Fields S (2004) Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp Funct Genomics 5:216–224. doi:10.1002/cfg.391

    PubMed  Article  CAS  Google Scholar 

  • van Gorcom RF, van den Hondel CAMJJ (1988) Expression analysis vectors for Aspergillus niger. Nucleic Acids Res 16:9052

    PubMed  Article  Google Scholar 

  • van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwels PH, van den Hondel CAMJJ (1987) Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 206:71–75

    PubMed  Article  Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580–583. doi:10.1126/science.1124550

    PubMed  Article  CAS  Google Scholar 

  • Vinck A, Terlou M, Pestman WR, Martens EP, Ram AFJ, van den Hondel CAMJJ, Wösten HAB (2005) Hyphal differentiation in the exploring mycelium of Aspergillus niger. Mol Microbiol 58:693–699. doi:10.1111/j.1365-2958.2005.04869.x

    PubMed  Article  CAS  Google Scholar 

  • Vishniac W, Santer M (1957) The Thiobacilli. Bacteriol Rev 21:195–213

    PubMed  CAS  Google Scholar 

  • White S, McIntyre M, Berry DR, McNeil B (2002) The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22:1–14

    PubMed  Article  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    PubMed  Article  CAS  Google Scholar 

  • Zhang Y, Qi H, Taylor R, Xu W, Liu LF, Jin S (2007) The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3:337–346

    PubMed  CAS  Google Scholar 

  • Zustiak MP, Pollack JK, Marten MR, Betenbaugh MJ (2008) Feast or famine: autophagy control and engineering in eukaryotic cell culture. Curr Opin Biotechnol 19:518–526. doi:10.1016/j.copbio.2008.07.007

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the SenterNovem IOP Genomics project (IGE07008). It was carried out within the research program of the Kluyver Centre for Genomics of Industrial Fermentation, which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research. This work was (co)financed by the Netherlands Consortium for Systems Biology, which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research. We thank Reinhard Fischer from the Karlsruhe Institute of Technology in Germany for providing us with the strain SRS29. We thank Crescel Martis and Leonie Schmerfeld for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Nitsche.

Additional information

Benjamin M. Nitsche and Anne-Marie Burggraaf-van Welzen equally contributed to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1034 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nitsche, B.M., Burggraaf-van Welzen, AM., Lamers, G. et al. Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger . Appl Microbiol Biotechnol 97, 8205–8218 (2013). https://doi.org/10.1007/s00253-013-4971-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4971-1

Keywords

  • Mitophagy
  • Carbon starvation
  • Cell death
  • Automated image analysis