Skip to main content
Log in

Purification of recombinant catalase-peroxidase HPI from E. coli and its application in enzymatic polymerization reactions

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, a recombinant catalase-peroxidase HPI from Escherichia coli was prepared, purified, and used in enzymatic polymerization reactions for the production of several oligomeric products. We tested the enzyme on four different substrates, chosen as representative of phenols and anilines: phenol, 3-methoxyphenol, catechol, and aniline. The polymerization reactions were followed by SEC-HPLC analysis, and except for aniline, all the other substrates were completely converted into one or more polymerization products. Results showed that reactions performed with phenol and 3-methoxyphenol allowed the isolation of some oligomers of different weight: a 27-monomeric unit oligomer and a 23-U oligomer are the heaviest ones. Experiments performed with catechol showed the formation of oligomers of 7 U in the reaction with HPI. HPI polymerization reactions performed with aniline allowed the identification of two different oligomers, one of 4 U and one of 10 U. All the substrates have been also used in reactions catalyzed by HRP in the same reaction conditions. Several products were common to the two enzymes. This work suggests the use of HPI as an alternative enzyme in peroxidatic reactions for the production of different oligomers from phenols and other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bertrand T, Eady NAJ, Jones JN, Nagy JM, Jamart-Gregoire B, Raven EL, Brown KA (2004) Crystal structure of Mycobacterium tubercolosis catalase-peroxidase. J Biol Chem 279:38991–38999

    Article  CAS  PubMed  Google Scholar 

  • Benedito LF, Nakagaki S, Saczk AA, Peralta-Zamora PG, Costa CMM (2003) Study of metalloporphyrin covalently bound to silica as catalyst in the ortho-dianisidine oxidation. Applied Catalysis 250:1–11

    Article  CAS  Google Scholar 

  • Carpena X, Loprasert S, Mongkolsuk S, Switala J, Loewen PC, Fita I (2003) Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7 A resolution. J Mol Biol 327:475–489

    Article  CAS  PubMed  Google Scholar 

  • Carpena X, Melik-Adamyan W, Loewen PC, Fita I (2004) Structure of the C-terminal domain of the catalase-peroxidase KatG from Escherichia coli. Biol Crystal 60:1824–1832

    Article  Google Scholar 

  • Claiborne A, Fridovich I (1979a) Chemical and enzymatic intermediates in the peroxidation of o-dianisidine by horseradish peroxidase. Spectral properties of the products of o-dianisidine oxidation. Biochemistry 18(11):2324–2329

    Article  CAS  Google Scholar 

  • Claiborne A, Fridovich I (1979b) Purification of the o-dianisidine peroxidase from E. coli. J Biol Chem 254:4245–4252

    CAS  Google Scholar 

  • Diaz A, Loewen PC, Fita I, Carpena X (2012) Thirty years of eme catalases structural biology. Arch Biochem Biophys 525:102–110

    Article  CAS  PubMed  Google Scholar 

  • Gregory RPF (1966) A rapid assay for peroxidase activity. J Biochem 101:582–583

    CAS  Google Scholar 

  • Hwang S, Lee CH, Ahn IS (2008) Product identification of guaiacol oxidation catalyzed by manganese peroxidase. J Ind Eng Chem 14:487–492

    Article  CAS  Google Scholar 

  • Kudalkar SN, Campbell RA, Li Y, Varnado CL, Prescott C, Goodwin DC (2012) Enhancing the peroxidatic activity of KatG by deletion mutagenesis. J Inorg Biochem 116:106–115

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:93–18

    Article  Google Scholar 

  • Li Y, Goodwin DC (2004) Vital roles of an interhelical insertion in catalase-peroxidase bifunctionality. Biochem Biophys Res Comm 318:970–976

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York

    Google Scholar 

  • Moore RL, Powell LJ, Goodwin DC (2008) The kinetic properties producing the perfunctory pH profiles of catalase-peroxidases. Biochem Biophys Acta 1784:900–907

    CAS  PubMed  Google Scholar 

  • Møller KM, Ottolenghi P (1966) The oxidation of o-dianisidine by H2O2 and peroxidase at neutral pH. Trav Lab Carlsberg 35:369–89

    Google Scholar 

  • Regelsberger G, Jakopitsch C, Engleder M, Ruker F, Peschek GA, Obinger C (1999) Spectral and kinetic studies of the oxidation of the monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I. Biochemistry 38:10480–10488

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel D (2000) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY

    Google Scholar 

  • Singh R, Wiseman B, Deemagarn T, Donald LJ, Duckworth HW, Carpena X, Fita I, Loewen PC (2004) Catalases-peroxidases (KatG) exhibit NADH oxidase activity. J Biol Chem 279(41):43098–43106

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Wiseman B, Deemagarn T, Jha V, Switala J, Loewen PC (2008) Comparative study of catalase-peroxidases (KatGs). Arch Bioch Biophys 471:207–214

    Article  CAS  Google Scholar 

  • Tonami H, Uyama H, Kobayashi S, Kubota M (1999) Peroxidase-catalyzed oxidative polymerization of m-substituted phenol derivatives. Macromol Chem Phys 200:2365–2375

    Article  CAS  Google Scholar 

  • Triggs-Raine B, Loewen PC (1987) Physical characterization of katG, encoding catalase HPI of Escherichia coli. Gene 52:121–128

    Article  CAS  PubMed  Google Scholar 

  • Triggs-Raine B, Doble B, Mulvey M, Sorby P, Loewen PC (1988) Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. J Bacteriol 170(9):4415–4419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uyama H, Maruichi N, Tonami H, Kobayashi S (2002) Peroxidase-catalyzed oxidative polymerization of bisphenols. Biomacromol 3:187–193

    Article  CAS  Google Scholar 

  • Varnado C, Goodwin D (2004) System for the expression of recombinant hemeproteins in Escherichia coli. Protein Expr Purif 35:76–83

    Article  CAS  PubMed  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struc Biol 2:388–393

    Article  CAS  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–19

    Article  CAS  PubMed  Google Scholar 

  • Zaid T, Srikumar T, Benov L (2003) Growth of Escherichia coli in Iron-enriched medium increases HPI catalase activity. J Biochem Mol Biol 36:608–610

    Article  CAS  PubMed  Google Scholar 

  • Zámocký M, Regelsberger G, Jakopitsch C, Obinger C (2001) The molecular peculiarities of catalase-peroxidases. FEMS Lett 492:177–182

    Google Scholar 

  • Zámocký M, Furtmüller P, Obinger C (2010) Evolution of structure and function of class I peroxidase. Arch Biochem 500:45–57

    Article  PubMed  Google Scholar 

  • Zámocký M, Gasselhuber B, Furtmuller PG, Obinger C (2012) Molecular evolution of hydrogen peroxide degrading enzymes. Arch Biochem Biophys 525:131–144

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to Dr. Anna Daghetti for MALDI-TOF analyses and Dr. Giovanni Crosta for helpful discussion. This work was partially supported by US-ARMY-Grant no. W911NF-10-1-0204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Di Gennaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Gennaro, P., Bargna, A., Bruno, F. et al. Purification of recombinant catalase-peroxidase HPI from E. coli and its application in enzymatic polymerization reactions. Appl Microbiol Biotechnol 98, 1119–1126 (2014). https://doi.org/10.1007/s00253-013-4948-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4948-0

Keywords

Navigation