Applied Microbiology and Biotechnology

, Volume 98, Issue 3, pp 1195–1203 | Cite as

Penicillin G acylase from Achromobacter sp. CCM 4824

An efficient biocatalyst for syntheses of beta-lactam antibiotics under conditions employed in large-scale processes
  • Stanislav Bečka
  • Václav Štěpánek
  • Rajasekar W. Vyasarayani
  • Michal Grulich
  • Jaroslav Maršálek
  • Kamila Plháčková
  • Marie Dobišová
  • Helena Marešová
  • Martina Plačková
  • Renáta Valešová
  • Andrea Palyzová
  • Anupama Datla
  • Trupti K. Ashar
  • Pavel Kyslík
Biotechnologically relevant enzymes and proteins

Abstract

Penicillin G acylase from Achromobacter sp. (NPGA) was studied in the enzymatic synthesis of β-lactam antibiotics by kinetically controlled N-acylation. When compared with penicillin acylase of Escherichia coli (PGA), the NPGA was significantly more efficient at syntheses of ampicillin and amoxicillin (higher S/H ratio and product accumulation) in the whole range of substrate concentrations. The degree of conversion of 6-aminopenicillanic acid to amoxicillin and ampicillin (160 mM 6-APA, 350 mM acyl donor methylester⋅HCl, pH 6.3, 25 °C, reaction time of 200 min) with immobilized NPGA equaled 96.9 % and 91.1 %, respectively. The enzyme was highly thermostable with maximum activity at 60 °C (pH 8.0) and 65 °C (pH 6.0). Activity half-life at 60 °C (pH 8.0) and at 60 °C (pH 6.0) was 24 min and 6.9 h, respectively. Immobilized NPGA exhibited long operational stability with half-life of about 2,000 cycles for synthesis of amoxicillin at conversion conditions used in large-scale processes (230 mM 6-APA, 340 mM d-4-hydroxyphenylglycine methylester⋅HCl, 27.5 °C, pH 6.25). We discuss our results with literature data available for related penicillin acylases in terms of their industrial potential.

Keywords

Achromobacter sp. Penicillin G acylase β-Lactam antibiotics Kinetically controlled synthesis Immobilized enzyme 

References

  1. Alkema WBL, Dijkhuis AJ, deVries E, Janssen DB (2002) The role of hydrophobic active-site residues in substrate specificity and acyl transfer activity of penicillin acylase. Eur J Biochem 269:2093–2100PubMedCrossRefGoogle Scholar
  2. Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Process Res Dev 2:128–133CrossRefGoogle Scholar
  3. Cai G, Zhu S, Yang S, Zhao G, Jiang W (2004) Cloning, overexpression, and characterization of a novel thermostable penicillin G acylase from Achromobacter xylosoxidans: probing the molecular basis for its high thermostability. Appl Environ Microbiol 70:2764–2770PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chandel AK, Rao LV, Narasu ML, Singh OV (2008) The realm of penicillin G acylase in β-lactam antibiotics. Enzyme Microb Technol 42:199–207CrossRefGoogle Scholar
  5. Cheng T, Chen M, Zheng H, Wang J, Yang S, Jiang W (2006) Expression and purification of penicillin G acylase enzymes from four different micro-organisms, and a comparative evaluation of their synthesis/hydrolysis ratios for cephalexin. Protein Expr Purif 46:107–113PubMedCrossRefGoogle Scholar
  6. Datla A, Rajasekar VW, Kyslík P, Bečka S, Krishnakant AT, Yogesh ZS, Nikunj K (2011) Process for the preparation of penicillin or cephalosporin antibiotics. EP 2173892Google Scholar
  7. Diender MB, Straathof AJJ, van der Wielen LAM, Ras C, Heijden JJ (1998) Feasibility of the thermodynamically controlled synthesis of amoxicillin. J Mol Catal B Enzym 5:249–253CrossRefGoogle Scholar
  8. Diender MB, Straathof AJJ, van der Does T, Zomerdijk M, Heijden JJ (2000) Course of pH during the formation of amoxicillin by a suspension-to-suspension reaction. Enzyme Microb Technol 27:576–582PubMedCrossRefGoogle Scholar
  9. Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PC (1995) Penicillin acylase has a single-amino-acid catalytic centre. Nature 373:264–268PubMedCrossRefGoogle Scholar
  10. Gabor EM, de Vries EJ, Janssen DB (2005) A novel penicillin acylase from the environmental gene pool with improved synthetic properties. Enzyme Microb Technol 36:182–190CrossRefGoogle Scholar
  11. Guranda DT, Volovik TS, Švedas VK (2004) pH stability of penicillin acylase from Escherichia coli. Biochem Mosc 69:1386–1390CrossRefGoogle Scholar
  12. Hernández-Jústiz O, Terreni M, Pagani G, García JL, Guisán JM, Fernández-Lafuente R (1999) Evaluation of different enzymes as catalysts for the production of β-lactam antibiotics following a kinetically controlled strategy. Enzyme Microb Technol 25:336–343CrossRefGoogle Scholar
  13. Ignatova Z, Wischnewski F, Notbohm H, Kasche V (2005) Prosequence and Ca2+-binding: implications for folding and maturation of Ntn-hydrolase penicillin amidase from E. coli. J Mol Biol 348:999–1014PubMedCrossRefGoogle Scholar
  14. Illanes A, Wilson L, Corrotea O, Tavernini L, Zamorano F, Aguirre C (2007) Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium. J Mol Catal B Enzym 47:72–78CrossRefGoogle Scholar
  15. Jager SAW, Jekel PA, Janssen DB (2007) Hybrid penicillin acylases with improved properties for synthesis of β-lactam antibiotics. Enzyme Microb Technol 40:1335–1344CrossRefGoogle Scholar
  16. Kasche V, Galunsky B, Ignatova Z (2003) Fragments of pro-peptide activate mature penicillin amidase of Alcaligenes faecalis. Eur J Biochem 270:4721–4728PubMedCrossRefGoogle Scholar
  17. Kutzbach C, Rauenbusch E (1974) Preparation and general properties of crystalline penicillin acylase from Escherichia coli ATCC 11105. H-S Z Physiol Chem 354:45–53CrossRefGoogle Scholar
  18. Kyslík P, Štěpánek V, Hollerová L, Bečka S, Vyasarayani WR, Datla A, Plháčkova K, Maršálek J (2011) DNA sequence encoding penicillin acylase, novel recombinant recombinant DNA constructs and recombinant microorganisms. US 8039604Google Scholar
  19. Ospina S, Barzana E, Ramírez OT, López-Munguía A (1996) Effect of pH in the synthesis of ampicillin by penicillin acylase. Enzyme Microb Technol 19:462–469CrossRefGoogle Scholar
  20. Plháčková K, Bečka S, Škrob F, Kyslík P (2003) Isolation and characterization of a new strain of Achromobacter sp. with β-lactam antibiotic acylase activity. Appl Microbiol Biotechnol 62:507–516PubMedCrossRefGoogle Scholar
  21. Ribeiro MPA, Ferreira ALO, Giordano RLC, Giordano RC (2005) Selectivity of enzymatic synthesis of ampicillin by E. coli PGA in the presence of high concentrations of substrates. J Mol Catal B Enzym 33:81–86CrossRefGoogle Scholar
  22. Schroën CGPH, Nierstrasz VA, Kroon PJ, Bosma R, Janssen AEM, Beeftink HH, Tramper J (1999) Thermodynamically controlled synthesis of β-lactam antibiotics. Equilibrium concentrations and side-chain properties. Enzyme Microb Technol 24:498–506CrossRefGoogle Scholar
  23. Škrob F, Bečka S, Plháčková K, Fotopolusová V, Kyslík P (2003) Novel penicillin G acylase from Achromobacter sp. CCM 4824. Enzyme Microb Technol 32:738–744CrossRefGoogle Scholar
  24. Sobotková L, Štěpánek V, Plháčková K, Kyslík P (1996) Development of a high-expression system for penicillin G acylase based on the recombinant Escherichia coli strain RE3(pKA18). Enzyme Microb Technol 19:389–397CrossRefGoogle Scholar
  25. Švedas V, Guranda D, van Langen L, van Rantwijk F, Sheldon R (1997) Kinetic study of penicillin acylase from Alcaligenes faecalis. FEBS Lett 417:414–418PubMedCrossRefGoogle Scholar
  26. Youshko MI, van Langen LM, de Vroom E, Moody HM, van Rantwijk F, Sheldon RA, Švedas VK (2000) Penicillin acylase-catalyzed synthesis of ampicillin in “aqueous solution–precipitate” systems. High substrate concentration and supersaturation effect. J Mol Catal B Enzym 10:509–515CrossRefGoogle Scholar
  27. Youshko MI, van Langen LM, de Vroom E, van Rantwijk F, Sheldon RA, Švedas VK (2001) Highly efficient synthesis of ampicillin in an “aqueous solution–precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotechnol Bioeng 73:426–430PubMedCrossRefGoogle Scholar
  28. Youshko MI, Chilov GG, Shcherbakova TA, Švedas VK (2002) Quantitative characterization of the nucleophile reactivity in penicillin acylase-catalyzed acyl transfer reactions. Biochim Biophys Acta 1599:134–140PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stanislav Bečka
    • 1
  • Václav Štěpánek
    • 1
  • Rajasekar W. Vyasarayani
    • 2
  • Michal Grulich
    • 1
  • Jaroslav Maršálek
    • 1
  • Kamila Plháčková
    • 1
  • Marie Dobišová
    • 1
  • Helena Marešová
    • 1
  • Martina Plačková
    • 1
  • Renáta Valešová
    • 1
  • Andrea Palyzová
    • 1
  • Anupama Datla
    • 2
  • Trupti K. Ashar
    • 2
  • Pavel Kyslík
    • 1
  1. 1.Laboratory of Enzyme TechnologyInstitute of Microbiology ASCR, v.v.i.PragueCzech Republic
  2. 2.Fermenta Biotech Ltd.ThaneIndia

Personalised recommendations