Skip to main content
Log in

Metagenomic mining of feruloyl esterases from termite enteric flora

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A metagenome expression library was created from Trinervitermes trinervoides termite hindgut symbionts and subsequently screened for feruloyl esterase (FAE) activities, resulting in seven recombinant fosmids conferring feruloyl esterase phenotypes. The amino acid sequence lengths of the seven FAE encoding open reading frames (ORFs) ranged from 260 to 274 aa and encoded polypeptides of between 28.9 and 31.4 kDa. The highest sequence identity scores for the seven ORFs against the GenBank database were between 45 and 59 % to a number of carboxyl ester hydrolyses. The seven FAE primary structures contained sequence motifs that correspond well with a classical pentapeptide (G-x-S-x-G) serine hydrolyse signature motif which harbours the catalytic serine residue in other FAE families. Six of the seven fae genes were successfully expressed heterologously in Escherichia coli, and the purified enzymes exhibited temperature optima range of 40–70 °C and the pH optima of between 6.5 and 8.0. The k cat/K M ratios for the six characterised FAEs showed the following order of substrate preference: methyl sinapate > methyl ferulate > ethyl ferulate. All six FAEs showed poor conversion rates against methyl p-coumarate and methyl caffeate, both of which lacked the methoxy (O–CH3) group substituent on the aromatic ring of the ester substrates, emphasising the requirement for at least one methoxy group on the aromatic ring of the hydroxycinnamic acid ester substrate for optimal FAE activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abokitse K, Wu M, Bergeron H, Grosse S, Lau P (2010) Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Appl Microb Biotechnol 87:195–203

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TS, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen A, Svendsen A, Vind J, Lassen SF, Hjort C, Borch K, Patkar SA (2002) Studies on ferulic acid esterase activity in fungal lipases and cutinases. Colloids Surf Biointerface 26:47–55

    Article  CAS  Google Scholar 

  • Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the EXPASY WWW server. Trends Biochem Sci 19:258–260

    Article  CAS  PubMed  Google Scholar 

  • Arima K, Woodley J (2008) Computational methods for understanding bacterial and archeal genomes. In: Xu Y, Gogatern P (eds) Metagenomics. CH 14. Imperial College Press, London, pp 345–350

  • Arpigny KL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. J Biochem 343:177–183

    Article  CAS  Google Scholar 

  • Bendten JD, Nielsen H, von Heijnie G, Brunak S (2004) Improved prediction of signal peptide: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Benoit I, Danchin EJ, Bleichrodt RJ, de Vries RP (2008) Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396

    Article  CAS  PubMed  Google Scholar 

  • Biely P (2003) Xylanolytic Enzymes. In: Whitaker JR, Voragen A, Wong D (eds) Handbook of food enzymology. Marcel Dekker, New York, pp 879–916

    Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxylesterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Britton HTK, Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1:1456–1462. doi:10.1039/jr9310001456

    Google Scholar 

  • Castanares A, McCrae SI, Wood TM (1992) Purification and properties of a feruloyl/p-coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microb Technol 14:875–884

    Article  CAS  Google Scholar 

  • Chandrasekharaiah M, Thulasi A, Bagath M, Kumar DP, Sunil Singh Santosh SS, Palanivel C, Vazhakkala LJ, Sampath KT (2011) Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut. BMB Rep 44:52–53

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652

    Article  CAS  PubMed  Google Scholar 

  • Davis RW, Kamble ST, Prabhakaran SK (1995) Characterization of general esterases in workers of the Eastern subterranean termite. J Econ Entomol 88:574–578

    CAS  Google Scholar 

  • Donaghy J, McKay AM (1997) Purification and characterization of a feruloyl esterase from the fungus Penicillium expansum. J Appl Microbiol 83:718–726

    Article  CAS  PubMed  Google Scholar 

  • Donaghy J, Kelly PF, McKay AM (1998) Detection of ferulic acid esterase production by Bacillus sp. and Lactobacilli. Appl Microbiol Biotechnol 50:257–260

    Article  CAS  PubMed  Google Scholar 

  • Elend C, Scheisser C, Leggewie C, Babiak P, Carballeira D, Steele L, Reymond L, Jaeger K, Streit W (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 72:3637–3645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faulds CB (2010) What can feruloyl esterases do for us? Phytochem Rev 9:121–132

    Article  CAS  Google Scholar 

  • Faulds CB, Williamson G (1994) Purification and characterization of a ferulic acid esterase (FAE-III) from Aspergillus niger specificity of the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140:779–787

    Article  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polysaccharides in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilliespie DE, Rondon MR, Goodman RM, Handelsman J, Williamson LL (2005). Metagenomic library from uncultured microorganisms. In: Osborn AM, Smith, CJ (eds) Molecular microbial ecology, chapter 1. Taylor and Francis Group, New York, pp 261–279

  • Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13:435–448

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1990) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    Google Scholar 

  • Hatzakis NS, Daphnomili D, Smonou I (2003) Ferulic acid esterase from Humicola insolens catalyzes enentioselective transesterificstion of secondary alcohols. J Mol Catal 21:309–311

    CAS  Google Scholar 

  • Hermoso JA, Aparicio SJ, Molina R, Juge N, Gonzalez R, Faulds CB (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggest evolutive functional convergence in feruloyl esterase family. J Mol Biol 338:495–506

    Article  CAS  PubMed  Google Scholar 

  • Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127

    Article  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysis: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  • Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kroon PA, Faulds CB, Williamson G (1996) Purification and characterization of a novel esterase induced by growth of Aspergillus niger on sugar-beet pulp. Biotechnol Appl Biochem 23:255–262

    CAS  PubMed  Google Scholar 

  • Kroon P, Williamson G, Fish NM, Archer DB, Belshaw NJ (2000) A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur J Biochem 267:6740–6752

    Article  CAS  PubMed  Google Scholar 

  • Krueger NA, Adesogan AT, Staples CR, Krueger WK, Dean DB, Littell RC (2008) The potential to increase digestibility of tropical grasses with a fungal, ferulic acid esterase enzyme preparation. Anim Feed Sci Technol 145:95–108

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laszlo JA, Compton DL, Eller FJ, Taylor SL, Isbell TA (2003) Packed-bed bioreactor synthesis of feruloylated monoacyl- and diacylglycerols: clean production of a “green” sunscreen. Green Chem 5:382–386

    Article  CAS  Google Scholar 

  • MohneN D, Bar-Peled M, Somerville C (2008) Biosynthesis of plant cell wall. In: Himmerl ME (ed) Biomass recalcitrance. Blackwell, Oxford, pp 266–277

    Google Scholar 

  • Nsereko VL, Smiley BK, Rutherford WM, Spielbauer A, Forrester KJ, Hettinger GH, Harman EK, Harman BR (2008) Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Anim Feed Sci Technol 145:122–135

    Article  CAS  Google Scholar 

  • Rakotoarivonina H, Hermant B, Chabbert B, Touzel JP, Remond C (2011) A thermostable feruloyl esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non pretreated plant cell walls. Appl Microbial Biotechnol 90:541–552

    Article  CAS  Google Scholar 

  • Rashamuse KJ, Magomani V, Ronneburg T, Brady D (2009) A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous beta-lactamase activity on nitrocefin. Appl Microbiol Biotechnol 83:491–500

    Article  CAS  PubMed  Google Scholar 

  • Rashamuse K, Mabizela-Mokoena N, Sanyika W, Mabvakure B, Brady D (2012) Accessing diversity from termite hindgut symbionts through metagenomics. J Mol Microbiol Biotechnol 222:277–286

    Article  Google Scholar 

  • Record E, Asther M, Sigoillot C, Pages S, Delattre M, Haon M, van den Hondel CA, Sigoillot JC, Lesage-Meessen L, Asther M (2003) Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching applications. Appl Microbiol Biotechnol 62:349–355

    Article  CAS  PubMed  Google Scholar 

  • Rumbold K, Biely P, Mastihubova M, Marinka Gudelj M, Gubitz M, Robra KH, Prior BA (2003) Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Appl Environ Microbiol 69:5622–5626

    Google Scholar 

  • Ruvolo-Takasusuki MCR, Collet T (2000) Characterization of Nasutitermes globiceps esterases. Biochem Genet 38:367–375

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. J Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanyika TW, Rashamuse KJ, Hennessy F, Brady D (2012) Luminal hindgut bacterial diversities of the grass and sugarcane feeding termite Trinervitermes trinervoides. African J Microbiol Res 6:2639–2648

    Google Scholar 

  • Scharf ME, Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels, Bioprod Biorefin 2:540–552

    Article  CAS  Google Scholar 

  • Shiyi O, Kin-Chor K (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:1093/molbev/msm1092

    Google Scholar 

  • Tarbouriech N, Prates JA, Fontes CM, Davies GJ (2005) Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from Clostridium thermocellum. Acta Crystallogr D 61:194–197

    Article  PubMed  Google Scholar 

  • Topakas E, Christakopolous P, Faulds C (2005) Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J Biotechnol 115:355–366

    Article  CAS  PubMed  Google Scholar 

  • Turner P, Mamo G, Gand Karlsson EN (2007) Potential and utilisation of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:1–23

    Article  Google Scholar 

  • Udatha DB, Kouskoumvekaki I, Olsson L, Panagiotou G (2011) The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnol Adv 29:94–110

    Article  CAS  PubMed  Google Scholar 

  • Vafiadi C, Nahmias VR, Faulds CB, Christakopoulos P (2009) Feruloyl esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures. J Biotechnol 139:124–129

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal 9:113–148

    CAS  Google Scholar 

  • Warnecke F, Luginbu¨hl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Herna’ndez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Noda H, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MM, Tarver MR, Coy MR, Scharf EM (2009) Characterization of four esterase genes and esterase activity from the gut of the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 73:30–48

    Google Scholar 

  • Wong DWS (2006) Ferolyl esterase: a key enzyme in biomass degradation. Appl Biochem Biotechnol 133:87–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Technology Innovation Agency of South Africa and the CSIR South Africa. The authors would also like to thank Mr Harris Tshwane Manchidi, Johan Kemp and Dr Fritha Hennessey for the help with sample collection. Special thanks to Cornel Du Toit, UP Department of Entomology, University of Pretoria, for the help with termite collection and dissection and Dr Daniel Visser for his input during the screening programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konanani Rashamuse.

Additional information

Konanani Rashamuse and Tina Ronneburg contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashamuse, K., Ronneburg, T., Sanyika, W. et al. Metagenomic mining of feruloyl esterases from termite enteric flora. Appl Microbiol Biotechnol 98, 727–737 (2014). https://doi.org/10.1007/s00253-013-4909-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4909-7

Keywords

Navigation