Skip to main content
Log in

Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Uroporphyrinogen III (urogen III) was produced from 5-aminolevulinic acid (ALA), which is a common precursor of all metabolic tetrapyrroles, using thermostable ALA dehydratase (ALAD), porphobilinogen deaminase (PBGD), and urogen III synthase (UROS) of Thermus thermophilus HB8. The UROS-coding gene (hemD 2 ) of T. thermophilus HB8 was identified by examining the gene product for its ability to produce urogen III in a coupled reaction with ALAD and PBGD. The genes encoding ALAD, PBGD, and UROS were separately expressed in Escherichia coli BL21 (DE3). To inactivate indigenous mesophilic enzymes, the E. coli transformants were heated at 70 °C for 10 min. The bioconversion of ALA to urogen III was performed using a mixture of heat-treated E. coli transformants expressing ALAD, PBGD, and UROS at a cell ratio of 1:1:1. When the total cell concentration was 7.5 g/l, the mixture of heat-treated E. coli transformants could convert about 88 % 10 mM ALA to urogen III at 60 °C after 4 h. Since eight ALA molecules are required for the synthesis of one porphyrin molecule, approximately 1.1 mM (990 mg/l) urogen III was produced from 10 mM ALA. The present technology has great potential to supply urogen III for the biocatalytic production of vitamin B12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alwan AF, Mgbeje BI, Jordan PM (1989) Purification and properties of uroporphyrinogen III synthase (co-synthase) from an overproducing recombinant strain of Escherichia coli K-12. Biochem J 264:397–402

    PubMed  CAS  Google Scholar 

  • Amillet JM, Labbe-Bois R (1995) Isolation of the gene HEM4 encoding uroporphyrinogen III synthase in Saccharomyces cerevisiae. Yeast 11:419–424

    Article  PubMed  CAS  Google Scholar 

  • Anderson PM, Desnick RJ (1982) Porphobilinogen deaminase: methods and principles of the enzymatic assay. Enzyme 28:146–157

    PubMed  CAS  Google Scholar 

  • Aviezer D, Cotton S, David M, Segev A, Khaselev N, Galili N, Gross Z, Yayon A (2000) Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression, and metastasis. Cancer Res 60:2973–2980

    PubMed  CAS  Google Scholar 

  • Balasubramanian T, Strachan JP, Boyle PD, Lindsey JS (2000) Rational synthesis of beta-substituted chlorin building blocks. J Org Chem 65:7919–7929

    Article  PubMed  CAS  Google Scholar 

  • Battersby AR (2000) Tetrapyrroles: the pigments of life. Nat Prod Rep 17:507–526

    Article  PubMed  CAS  Google Scholar 

  • Bensidhoum M, Ged CM, Poirier C, Guénet JL, de Verneuil H (1994) The cDNA sequence of mouse uroporphyrinogen III synthase and assignment to mouse chromosome 7. Mamm Genome 5:728–730

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum ER, Grinstaff MW, Labinger JA, Bercaw JE, Gray HB (1995) On the mechanism of catalytic alkene oxidation by molecular oxygen and halogenated iron porphyrins. J Mol Catal A Chem 104:L119–L122

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cavaleiro JA, Neves MG, Tomé AC, Silva AM, Faustino MA, Lacerda PS, Silva AM (2000) Porphyrin derivatives: synthesis and potential applications. J Heterocycl Chem 37:527–534

    Article  CAS  Google Scholar 

  • D’Amico A, Di Natale C, Paolesse R, Macagnano A, Mantini A (2000) Metalloporphyrins as basic material for volatile sensitive sensors. Sensors Actuators B Chem 65:209–215

    Article  Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  • Elfsson B, Wallin I, Eksborg S, Rudaeus K, Ros AM, Ehrsson H (1999) Stability of 5-aminolevulinic acid in aqueous solution. Eur J Pharm Sci 7:87–91

    Article  PubMed  CAS  Google Scholar 

  • Erskine PT, Norton E, Cooper JB, Lambert R, Coker A, Lewis G, Spencer P, Sarwar M, Wood SP, Warren MJ, Shoolingin-Jordan PM (1999) X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 A resolution. Biochemistry 38:4266–4276

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg N, Moser J, Jahn D (2003) Bacterial heme biosynthesis and its biotechnological application. Appl Microbiol Biotechnol 63:115–127

    Article  PubMed  CAS  Google Scholar 

  • Grinstaff MW, Hill MG, Labinger JA, Gray HB (1994) Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins. Science 264:1311–1313

    Article  PubMed  CAS  Google Scholar 

  • Grinstaff MW, Hill MG, Birnbaum ER, Schaefer WP, Labinger JA, Gray HB (1995) Structures, electronic properties, and oxidation–reduction reactivity of halogenated iron porphyrins. Inorg Chem 34:4896–4902

    Article  CAS  Google Scholar 

  • Hansson M, Rutberg L, Schröder I, Hederstedt L (1991) The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol 173:2590–2599

    PubMed  CAS  Google Scholar 

  • Harris WF, Burkhalter RS, Lin W, Timkovich R (1993) Enhancement of bacterial porphyrin biosynthesis by exogenous aminolevulinic acid and isomer specificity of the products. Bioorg Chem 21:209–220

    Article  CAS  Google Scholar 

  • Jasat A, Dolphin D (1997) Expanded porphyrins and their heterologs. Chem Rev 97:2267–2340

    Article  PubMed  CAS  Google Scholar 

  • Jones RM, Jordan PM (1994) Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochem J 299:895–902

    PubMed  CAS  Google Scholar 

  • Jones MC, Jenkins JM, Smith AG, Howe CJ (1994) Cloning and characterisation of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Mol Biol 24:435–448

    Article  PubMed  CAS  Google Scholar 

  • Jordan PM (1982) Uroporphyrinogen III cosynthetase: a direct assay method. Enzyme 28:158–169

    PubMed  CAS  Google Scholar 

  • Jordan PM, Burton G, Nordlöv H, Schneider MM, Pryde L, Scott AI (1979) Preuroporphyrinogen: a substrate for uroporphyrinogen III cosynthetase. J Chem Soc Chem Commun 5:204–205

    Article  Google Scholar 

  • Karpishin TB, Grinstaff MW, Komar-Panicucci S, McLendon G, Gray HB (1994) Electron transfer in cytochrome c depends upon the structure of the intervening medium. Structure 2:415–422

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Lim HK, Lee MH, Park JH, Hwang EC, Moon BJ, Lee SW (2009) Production of porphyrin intermediates in Escherichia coli carrying soil metagenomic genes. FEMS Microbiol Lett 295:42–49

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, de Boer AL, Petri R, Schmidt-Dannert C (2003) High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl Environ Microbiol 69:4875–4883

    Article  PubMed  CAS  Google Scholar 

  • Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285

    Article  PubMed  CAS  Google Scholar 

  • Mohr CD, Sonsteby SK, Deretic V (1994) The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR. Mol Gen Genet 242:177–184

    Article  PubMed  CAS  Google Scholar 

  • Murphy CD (2012) The microbial cell factory. Org Biomol Chem 10:1949–1957

    Article  PubMed  CAS  Google Scholar 

  • Novo M, Hüttmann G, Diddens H (1996) Chemical instability of 5-aminolevulinic acid used in the fluorescence diagnosis of bladder tumours. J Photochem Photobiol B 34:143–148

    Article  PubMed  CAS  Google Scholar 

  • Omata Y, Sakamoto H, Higashimoto Y, Hayashi S, Noguchi M (2004) Purification and characterization of human uroporphyrinogen III synthase expressed in Escherichia coli. J Biochem 136:211–220

    Article  PubMed  CAS  Google Scholar 

  • Piao Y, Kiatpapan P, Yamashita M, Murooka Y (2004) Effects of expression of hemA and hemB genes on production of porphyrin in Propionibacterium freudenreichii. Appl Environ Microbiol 70:7561–7566

    Article  PubMed  CAS  Google Scholar 

  • Sasarman A, Nepveu A, Echelard Y, Dymetryszyn J, Drolet M, Goyer C (1987) Molecular cloning and sequencing of the hemD gene of Escherichia coli K-12 and preliminary data on the Uro operon. J Bacteriol 169:4257–4262

    PubMed  CAS  Google Scholar 

  • Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145

    PubMed  CAS  Google Scholar 

  • Schubert HL, Phillips JD, Heroux A, Hill CP (2008) Structure and mechanistic implications of a uroporphyrinogen III synthase–product complex. Biochemistry 47:8648–8655

    Article  PubMed  CAS  Google Scholar 

  • Shoolingin-Jordan PM, Leadbeater R (1997) Coupled assay for uroporphyrinogen III synthase. Methods Enzymol 281:327–336

    Article  PubMed  CAS  Google Scholar 

  • Sutton JM, Boyle RW (2001) First synthesis of porphyrin–phthalocyanine heterodimers with a direct ethynyl linkage. Chem Commun 19:2014–2015

    Article  Google Scholar 

  • Sutton JM, Clarke OJ, Fernandez N, Boyle RW (2002) Porphyrin, chlorin, and bacteriochlorin isothiocyanates: useful reagents for the synthesis of photoactive bioconjugates. Bioconjug Chem 13:249–263

    Article  PubMed  CAS  Google Scholar 

  • Tan FC, Cheng Q, Saha K, Heinemann IU, Jahn M, Jahn D, Smith AG (2008) Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase. Biochem J 410:291–299

    Article  PubMed  CAS  Google Scholar 

  • Tsai SF, Bishop DF, Desnick RJ (1987) Purification and properties of uroporphyrinogen III synthase from human erythrocytes. J Biol Chem 262:1268–1273

    PubMed  CAS  Google Scholar 

  • Tsai SF, Bishop DF, Desnick RJ (1988) Human uroporphyrinogen III synthase: molecular cloning, nucleotide sequence, and expression of a full-length cDNA. Proc Natl Acad Sci U S A 85:7049–7053

    Article  PubMed  CAS  Google Scholar 

  • Verderber E, Lucast LJ, Van Dehy JA, Cozart P, Etter JB, Best EA (1997) Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. J Bacteriol 179:4583–4590

    PubMed  CAS  Google Scholar 

  • Whitaker CJ, Battah SH, Forsyth MJ, Edwards C, Boyle RW, Matthews EK (2000) Photosensitization of pancreatic tumour cells by delta-aminolaevulinic acid esters. Anticancer Drug Des 15:161–170

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, Kyogoku Y, Miki K, Masui R, Kuramitsu S (2000) Structural genomics projects in Japan. Nat Struct Biol 7 Suppl:943–945

    Google Scholar 

  • Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Synthetic hosts by monomolecular imprinting inside dendrimers. Nature 418:399–403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Japanese–German Graduate Externship Program of the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiko Hibino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hibino, A., Petri, R., Büchs, J. et al. Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes. Appl Microbiol Biotechnol 97, 7337–7344 (2013). https://doi.org/10.1007/s00253-013-4904-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4904-z

Keywords

Navigation