Skip to main content

Advertisement

Log in

Biotechnological and in situ food production of polyols by lactic acid bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarnikunnas J, Rönnholm K, Palva A (2002) The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl Microbiol Biotechnol 59:665–671

    Article  CAS  Google Scholar 

  • Aarnikunnas J, von Weymarn N, Rönnholm K, Leisola M, Palva A (2003) Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure L-lactic acid or pyruvate. Biotechnol Bioeng 82:653–663

    Article  CAS  Google Scholar 

  • Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotech 19:461–467

    Article  CAS  Google Scholar 

  • Amartey SA, Leung JPC (2000) Corn steep liquor as a source of nutrients for ethanologic fermentation by Bacillus stearothermophilus T-13. Bull Chem Technol Macedonia 19:65–71

    CAS  Google Scholar 

  • Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174

    Article  CAS  Google Scholar 

  • Arsköld E, Lohmeier-Vogel E, Cao R, Roos S, Rådström P, van Niel EW (2008) Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis. J Bacteriol 190:206–212

    Article  Google Scholar 

  • Bahador A, Lesan S, Kashi N (2012) Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial. Iran J Microbiol 4:75–81

    CAS  Google Scholar 

  • Bernt WO, Borzelleca JF, Flamm G, Murno IC (1996) Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol 24:S191–S197

    Article  CAS  Google Scholar 

  • Budavari S, O´Neil M, Smith A, Heckelman PE, Kinneary JF (1996) The Merck index. An encyclopedia of chemicals, drugs, and biologicals. Merck, Whitehouse Station, pp 1490–1491

  • Camu N, González A, De Winter T, Schoor AV, Bruyne KD, Vandamme P, Takrama JS, Addo SK, De Vuyst L (2008) Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl Environ Microbiol 74:86–98

    Article  CAS  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    Article  CAS  Google Scholar 

  • Carvalheiro F, Moniz P, Duarte LC, Esteves MP, Gírio FM (2011) Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J Ind Microbiol Biotechnol 38:221–227

    Article  CAS  Google Scholar 

  • Campos DCP, Santos AS, Wolkoff DB, Matta VM, Cabral LMC, Couri S (2004) Cashew apple juice stabilization by microfiltration. Desalination 148:61–65

    Article  Google Scholar 

  • Cummings JH, Stephen AM (2007) Carbohydrate terminology and classification. Eur J Clin Nutr 61:5–18

    Article  Google Scholar 

  • De Boeck R, Sarmiento-Rubiano LA, Nadal I, Monedero V, Pérez-Martínez G, Yebra MJ (2010) Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Appl Microbiol Biotechnol 85:1915–1922

    Article  CAS  Google Scholar 

  • De Vuyst L, Vancanneyt M (2007) Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol 24:120–127

    Article  Google Scholar 

  • Debord B, Lefebvre C, Guyot-Hermann AM, Hubert J, Bouche R, Guyot JC (1987) Study of different crystalline forms of mannitol: comparative behaviour under compression. Drug Dev Ind Pharm 13:1533–1546

    Article  CAS  Google Scholar 

  • Embuscado ME, Patil SK (2001) Erythritol. In: Dekker M (ed) Food science and technology, vol 17, Alternative sweeteners, 3rd ed. Marcel Dekker, New York, pp 235–254

    Google Scholar 

  • Erzinger GS, Vitolo M (2006) Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid. Appl Biochem Biotechnol 131:787–794

    Article  Google Scholar 

  • Font de Valdez G, Gerez CL, Torino MI, Rollán G (2010) New trends in cereal-based products using lactic acid bacteria. In: Mozzi F, Raya RR, Vignolo G (eds) Biotechnology of lactic acid bacteria. Novel applications. Wiley-Blackwell, Ames, pp 273–287

    Chapter  Google Scholar 

  • Fontes CPML, Honorato TL, Rabelo MC, Rodrigues S (2009) Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess Biosyst Eng 32:493–499

    Article  CAS  Google Scholar 

  • Galle S, Schwab C, Arendt E, Ganzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841

    Article  CAS  Google Scholar 

  • Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24:128–138

    Article  Google Scholar 

  • Garvie EI (1967) The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. J Gen Microbiol 48:439–447

    Article  CAS  Google Scholar 

  • Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474

    Article  CAS  Google Scholar 

  • Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2011) High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD+ cofactor recycling. Appl Environ Microbiol 77:6826–6835

    Article  CAS  Google Scholar 

  • Gutierrez AJE, Gaudillere JP (1996) Distribution, metabolism and role of sorbitol in higher plants. A review. Agronomie 5:281–298

    Article  Google Scholar 

  • Hahn G, Kaup B, Bringer-Meyer S, Sahm H (2003) A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene. Arch Microbiol 179:101–107

    CAS  Google Scholar 

  • Hammes WP, Gänzle MG (1998) Sourdough breads and related products. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn. Blackie Academic and Professional, London, pp 199–216

    Chapter  Google Scholar 

  • Helanto M, Aarnikunnas J, von Weymarn N, Airaksinen U, Palva A, Leisola M (2005) Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J Biotechnol 116:283–294

    Article  CAS  Google Scholar 

  • Hugenholtz J (2008) The lactic acid bacterium as a cell factory for food ingredient production. Int Dairy J 18:466–475

    Article  CAS  Google Scholar 

  • Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon CO (2011) Metagenomic analysis of kimchi, a traditional Korean fermented food. App Environ Microbiol 77:2264–2274

    Article  CAS  Google Scholar 

  • Jung JY, Lee SH, Lee HJ, Seo HY, Park WS, Jeon CO (2012) Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 153:378–387

    Article  CAS  Google Scholar 

  • Kim TW, Lee JH, Kim SE, Park MH, Chang HC, Kim HY (2009) Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int J Food Microbiol 131:265–271

    Article  CAS  Google Scholar 

  • Korakli M, Vogel RF (2003) Purification and characterization of mannitol dehydrogenase from Lactobacillus sanfranciscensis. FEMS Microbiol Lett 220:281–286

    Article  CAS  Google Scholar 

  • Kusserow B, Schimpf S, Claus P (2003) Hydrogenation of glucose to sorbitol over nickel and ruthenium catalysts. Adv Synth Catal 345:289–299

    Article  CAS  Google Scholar 

  • Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P (2007) High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73:1864–1872

    Article  CAS  Google Scholar 

  • Lehrian DW, Patterson GR (1983) Cocoa fermentation. In: Reed G (ed) Biotechnology, a comprehensive treatise, vol 5. Verlag Chemie, Basel, pp 529–575

    Google Scholar 

  • Liong MT, Shah NP (2005) Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. J Appl Microbiol 99:783–793

    Article  CAS  Google Scholar 

  • Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  Google Scholar 

  • Maicas S, Ferrer S, Pardo I (2002) NAD(P)H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni. Microbiology 148:325–332

    CAS  Google Scholar 

  • Makkee M, Kieboom APG, Van Bekkum H (1985) Production methods of D-mannitol. Starch-Starke 37:136–141

    Article  CAS  Google Scholar 

  • Martinez G, Barker HA, Horecker BL (1963) A specific mannitol dehydrogenase from Lactobacillus brevis. J Biol Chem 238:1598–1603

    CAS  Google Scholar 

  • Mayo B, Aleksandrzak-Piekarczyk T, Fernández M, Kowalczyk M, Álvarez-Martín P, Bardowski J (2010) Updates in the metabolism of lactic acid bacteria. In: Mozzi F, Raya RR, Vignolo G (eds) Biotechnology of lactic acid bacteria. Novel applications. Wiley-Blackwell, Ames, pp 273–287

    Google Scholar 

  • Monedero V, Pérez-Martínez G, Yebra MJ (2010) Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86:1003–1015

    Article  CAS  Google Scholar 

  • Moniz P, Carvalheiro F, Moura P, Pereira J, Duarte LC, Esteves MP, Gírio FM (2009) Screening and characterization of lactic acid bacteria for the production of mannitol in carob based syrups. Dissertation, BioMicroWorld 2009, Lisbon

  • Namgung HJ, Park HJ, Cho IH, Choi HK, Kwon DY, Shim SM, Kim YS (2010) Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J Sci Food Agric 90:1926–1935

    CAS  Google Scholar 

  • Neves AR, Ramos A, Shearman C, Gasson M, Almeida JS, Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur J Biochem 267:3859–3868

    Article  CAS  Google Scholar 

  • Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, Maycock C, Ramos A, Santos H (2002) Is the glycolytic flux in Lactococcus lactis primarily controlled by redox charge? Kinetics of NAD+ and NADH pools determined in vivo by 13C NMR. J Biol Chem 277:28088–28098

    Article  CAS  Google Scholar 

  • Nissen L, Pérez-Martínez G, Yebra MJ (2005) Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol Lett 249:177–183

    Article  CAS  Google Scholar 

  • Nyyssölä A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M (2005) Production of xylitol from d-xylose by recombinant Lactococcus lactis. J Biotechnol 118:55–66

    Article  Google Scholar 

  • Oliveira MEB, Oliveira GSF, Maia GA, Moreira RA, Monteiro ACO (2002) Aminoácidos livres majoritários no suco de caju: variação ao longo da safra. Rev Bras Frutic 24:133–137

    Article  Google Scholar 

  • Ortiz ME, Fornaguera MJ, Raya RR, Mozzi F (2012) Lactobacillus reuteri CRL 1101 highly produces mannitol from sugarcane molasses as carbon source. Appl Microbiol Biotechnol 95:991–999

    Article  CAS  Google Scholar 

  • Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F, Daniel HM, De Vuyst L (2011a) Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol 77:7698–7714

    Article  CAS  Google Scholar 

  • Papalexandratou Z, Vrancken G, De Bruyne K, Vandamme P, De Vuyst L (2011b) Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol 28:1326–1338

    Article  CAS  Google Scholar 

  • Parajó JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xilitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201

    Article  Google Scholar 

  • Patra F, Tomar SK, Arora S (2009) Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. J Food Sci 74:16–23

    Article  Google Scholar 

  • Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 175:26–31

    Article  CAS  Google Scholar 

  • Rodríguez C, Rimaux T, Fornaguera MJ, Vrancken G, Font de Valdez G, De Vuyst L, Mozzi F (2012) Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl Microbiol Biotechnol 93:2519–2527

    Article  Google Scholar 

  • Rühmkorf C, Jungkunz S, Wagner M, Vogel RF (2012) Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiol 32:286–294

    Article  Google Scholar 

  • Saha BC (2004) Purification and characterization of a novel mannitol dehydrogenase from Lactobacillus intermedius. Biotechnol Prog 20:537–542

    Article  CAS  Google Scholar 

  • Saha BC (2006a) Effect of salt nutrients on mannitol production by Lactobacillus intermedius NRRL B-3693. J Ind Microbiol Biotechnol 33:887–890

    Article  CAS  Google Scholar 

  • Saha BC (2006b) A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 72:676–680

    Article  CAS  Google Scholar 

  • Saha BC (2006c) Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme Microb Technol 39:991–995

    Article  CAS  Google Scholar 

  • Saha BC, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol Prog 20:537–542

    Article  Google Scholar 

  • Saha BC, Racine FM (2010) Effects of pH and corn steep liquor variability on mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 87:553–560

    Article  CAS  Google Scholar 

  • Saha BC, Racine FM (2011) Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 89:879–891

    Article  CAS  Google Scholar 

  • Sasaki Y, Laivenieks M, Zeikus JG (2005) Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization. Appl Microbiol Biotechnol 68:36–41

    Article  CAS  Google Scholar 

  • Scheirlinck I, Van der Meulen R, Van Schoor A, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2007) Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. Appl Environ Microbiol 73:6262–6269

    Article  CAS  Google Scholar 

  • Schiweck H, Bär A, Vogel R, Schwarz E, Kunz M (1994) Sugar alcohols. In: Elvers B, Hawkins S, Russey W (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 413–437

    Google Scholar 

  • Schwan RF (1998) Cocoa fermentations conducted with a defined microbial cocktail inoculum. Appl Environ Microbiol 64:1477–1483

    CAS  Google Scholar 

  • Silveira MM, Wisbeck E, Lemmel C, Erzinger G, da Costa JP, Bertasso M, Jonas R (1999) Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol 75:99–103

    Article  CAS  Google Scholar 

  • Söderling E, Hirvonen A, Karjalainen S, Fontana M, Catt D, Seppä L (2011) The effect of xylitol on the composition of the oral flora: a pilot study. Eur J Dent 5:24–31

    Google Scholar 

  • Soetaert W, Buchholz K, Vandamme EJ (1995) Production of D-mannitol and D-lactic acid by fermentation with Leuconostoc mesenteroides. Agro Food Ind Hi Tec 6:41–44

    CAS  Google Scholar 

  • Song SH, Vieille C (2009) Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84:55–62

    Article  CAS  Google Scholar 

  • Stanton C, Ross RP, Fitzgerald GF, Van Sinderen D (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16:198–203

    Article  CAS  Google Scholar 

  • Stolz P, Biicker G, Hammes WP, Vogel RF (1995) Utilization of electron acceptors by lactobacilli isolated from sourdough. Z Lebensm Unters Forsch 201:91–96

    Article  CAS  Google Scholar 

  • Tani Y, Vongsuvanlert V (1987) Sorbitol production by a methanol yeast Candida boidinii (Kloeckera sp.) No. 2201. J Ferment Technol 65:405–411

    Article  CAS  Google Scholar 

  • Tanzer JM (1995) Xylitol chewing gum and dental caries. Int Dent J 45:65–76

    CAS  Google Scholar 

  • Van der Meulen R, Scheirlinck I, Van Schoor A, Huys G, Vancanneyt M, Vandamme P, De Vuyst L (2007) Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs. Appl Environ Microbiol 73:4741–4750

    Article  Google Scholar 

  • van Munster IP, Nagengast FM (1993) The role of carbohydrate fermentation in colon cancer prevention. Scand J Gastroenterol Suppl 200:80–86

    Article  Google Scholar 

  • Veiga-da-Cunha M, Santos H, van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948

    CAS  Google Scholar 

  • Viana R, Yebra MJ, Galan JL, Monedero V, Pérez-Martínez G (2005) Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Res Microbiol 156:641–649

    Article  CAS  Google Scholar 

  • von Weymarn N, Hujanen M, Leisola M (2002a) Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem 37:1207–1213

    Article  Google Scholar 

  • von Weymarn N, Kiviharju K, Leisola M (2002b) High-level production of D-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29:44–49

    Article  Google Scholar 

  • von Weymarn N, Kiviharju K, Jaaskelainen ST, Leisola M (2003) Scale-up of a new bacterial mannitol production process. Biotechnol Prog 19:815–821

    Article  Google Scholar 

  • Wisselink HW, Mars AE, van der Meer P, Eggink G, Hugenholtz J (2004) Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl Environ Microbiol 70:4286–4292

    Article  CAS  Google Scholar 

  • Wisselink HW, Weusthius RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  • Wouters D, Grosu-Tudor S, Zamfir M, De Vuyst L (2012) Bacterial community dynamics, lactic acid bacteria species diversity and metabolite kinetics of traditional Romanian vegetable fermentations. J Sci Food Agric 93:749–760

    Article  Google Scholar 

  • Zaunmuller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of CONICET (PIP2010-0062), FONCyT (Préstamo BID PICT2008-933), and CIUNT from Argentina. M. E. Ortiz and J. Bleckwedel are recipients of doctoral fellowships from CONICET and FONCyT, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Mozzi.

Additional information

Maria Eugenia Ortiz and Juliana Bleckwedel contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, M.E., Bleckwedel, J., Raya, R.R. et al. Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97, 4713–4726 (2013). https://doi.org/10.1007/s00253-013-4884-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4884-z

Keywords

Navigation