Skip to main content

Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum

Abstract

In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4–90.3 % depending on the amount of AADC under optimum conditions (30 °C and pH 5.0) despite that acetoacetate, a β-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahn J-H, Sang B-I, Um Y (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresour Technol 102(7):4934–4937

    Article  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    Article  CAS  Google Scholar 

  • Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53(12):2854–2861

    CAS  Google Scholar 

  • Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327(5969):1110–1114

    Article  CAS  Google Scholar 

  • Cha JY, Hanna MA (2002) Levulinic acid production based on extrusion and pressurized batch reaction. Ind Crop Prod 16(2):109–118

    Article  CAS  Google Scholar 

  • Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98(7):1448–1453

    Article  CAS  Google Scholar 

  • Chen H, Yu B, Jin S (2011) Production of levulinic acid from steam exploded rice straw via solid superacid. Bioresour Technol 102(3):3568–3570

    Article  CAS  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88(10):3473–3480

    Article  CAS  Google Scholar 

  • Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81(3):187–192

    Article  CAS  Google Scholar 

  • Gogerty SD, Bobik AT (2010) Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol 74(24):8004–8010

    Article  Google Scholar 

  • Gong Y, Lin L (2011) Oxidative decarboxylation of levulinic acid by silver(i)/persulfate. Molecules 16(3):2714–2725

    Article  CAS  Google Scholar 

  • Gong Y, Lin L, Shi J, Liu S (2010) Oxidative decarboxylation of levulinic acid by cupric oxides. Molecules 15(11):7946–7960

    Article  CAS  Google Scholar 

  • Highbarger LA, Gerlt JA, Kenyon GL (1996) Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115. Biochemistry 35(1):41–46

    Article  CAS  Google Scholar 

  • Ho MC, Mernetret JF, Tsuruta H, Allen KN (2009) The origin of the electrostatic pertubation in acetoacetate decarboxylase. Nature 459(7245):393–397

    Article  CAS  Google Scholar 

  • Jo JH, Jeon CO, Lee SY, Lee DS, Park JM (2010) Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1. Int J Hydrogen Energy 35(3):1065–1073

    Article  CAS  Google Scholar 

  • Kim ES, Lee HJ, Bang W-G, Choi I-G, Kim KH (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102(5):1342–1353

    Article  CAS  Google Scholar 

  • Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102(16):7466–7469

    Article  CAS  Google Scholar 

  • Kurniawati S, Nicell JA (2007) Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme Microb Technol 41(3):353–361

    Article  CAS  Google Scholar 

  • Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Edit 49(26):4479–4483

    Article  CAS  Google Scholar 

  • Lee S-M, Cho MO, Park CH, Chung Y-C, Kim JH, Sang B-I, Um Y (2008) Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuel 22(5):3459–3464

    Article  CAS  Google Scholar 

  • Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369–384

    Article  CAS  Google Scholar 

  • Lou Z, Chen X, Tian L, Qiao M, Fan K, He H, Zhang X, Zong B (2010) Preparation and characterization of the chirally modified rapidly quenched skeletal Ni catalyst for enantioselective hydrogenation of butanone to R-(−)-2-butanol. J Mole Catal A: Chem 326(1–2):113–120

    Article  CAS  Google Scholar 

  • Matiasek MG, Choudhury K, Nemecek-Marshall M, Fall R (2001) Volatile ketone formation in bacteria: release of 3-oxopentanoate by soil Pseudomonads during growth on heptanoate. Curr Microbiol 42(4):276–281

    CAS  Google Scholar 

  • Mendoza L, Jonstrup M, Hatti-Kaul R, Mattiasson B (2011) Azo dye decolorization by a laccase/mediator system in a membrane reactor: enzyme and mediator reusability. Enzyme Microb Technol 49(5):478–484

    Article  CAS  Google Scholar 

  • Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pigm 77(2):295–302

    Article  CAS  Google Scholar 

  • Min K, Ryu J, Yoo Y (2010) Mediator-free glucose/O2 biofuel cell based on a 3-dimensional glucose oxidase/SWNT/polypyrrole composite electrode. Biotechnol Bioprocess Eng 15(3):371–375

    Article  CAS  Google Scholar 

  • Mitchell RJ, Kim J-S, Jeon B-S, Sang B-I (2009) Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time. Bioresour Technol 100(21):5352–5355

    Article  CAS  Google Scholar 

  • Moon C, Lee C, Sang B-I, Um Y (2011) Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresour Technol 102(22):10561–10568

    Article  CAS  Google Scholar 

  • Petersen DJ, Bennett GN (1990) Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli. Appl Environ Microbiol 56(11):3491–3498

    CAS  Google Scholar 

  • Pfromm PH, Amanor-Boadu V, Nelson R, Vadlani P, Madl R (2010) Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy 34(4):515–524

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzym Microb Technol 39(6):1242–1249

    Article  CAS  Google Scholar 

  • Smolander M, Boer H, Valkiainen M, Roozeman R, Bergelin M, Eriksson J-E, Zhang X-C, Koivula A, Viikari L (2008) Development of a printable laccase-based biocathode for fuel cell applications. Enzyme Microb Technol 43(2):93–102

    Article  CAS  Google Scholar 

  • Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass. Department of Energy, Washington, DC, pp 45–48

Download references

Acknowledgments

This research was supported by the Korean Ministry of Knowledge and Economy (2009301009001B) and the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2009-C1AAA001-0093286). We thank Prof. Young Je Yoo and Mr. Hoe Suk Lee at Seoul National University for their help in molecular docking simulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byoung-In Sang or Youngsoon Um.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 445 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Min, K., Kim, S., Yum, T. et al. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum . Appl Microbiol Biotechnol 97, 5627–5634 (2013). https://doi.org/10.1007/s00253-013-4879-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4879-9

Keywords

  • Enzymatic decarboxylation
  • Acetoacetate decarboxylase
  • Levulinic acid
  • 2-Butanone